In this work, novel hydrogel composites membranes comprising [2-(Methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide as monomer, N,N-methylene bisacrylamide as cross-linker, and 1-butyl-3-methylimidazolium hexafluorophosphate as ionic liquid additive, have been developed. Ionic liquid hydrogel composite membranes (IL-HCMs) were tested for membrane contactors applications, aiming to reduce surface hydrophobicity of the polypropylene support, to reduce wetting tendency due to interaction with hydrophobic foulants, while affecting salts rejection in desalination operation, because of the entrapment of ILs inside the porous mesh-like structure of the gel layer. Transmembrane flux comparable to the sole polypropylene support was observed for IL content > 1 wt.%. Furthermore, all IL membranes presented a larger rejection to sodium chloride than the PP support or the composites without ionic liquid inside. Although the overall transmembrane flux of IL-HCMs developed in this work is comparable with that of state of the art MD membranes, this study demonstrated that the strong hydrophilic hydrogel layer, with C.A. < 50° for IL content larger than 1 wt.%, serves as a stabilization coating, by providing the new media between the feed and the hydrophobic membrane surface, thus potentially controlling the diffusion of hydrophobic foulant molecules. This would result in a decrease in the membrane wetting and fouling aptitude.

Liquid Hydrogel Composite Membranes (IL-HCMs)

Enrica Fontananova;Efrem Curcio;Gianluca Di Profio
2019

Abstract

In this work, novel hydrogel composites membranes comprising [2-(Methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide as monomer, N,N-methylene bisacrylamide as cross-linker, and 1-butyl-3-methylimidazolium hexafluorophosphate as ionic liquid additive, have been developed. Ionic liquid hydrogel composite membranes (IL-HCMs) were tested for membrane contactors applications, aiming to reduce surface hydrophobicity of the polypropylene support, to reduce wetting tendency due to interaction with hydrophobic foulants, while affecting salts rejection in desalination operation, because of the entrapment of ILs inside the porous mesh-like structure of the gel layer. Transmembrane flux comparable to the sole polypropylene support was observed for IL content > 1 wt.%. Furthermore, all IL membranes presented a larger rejection to sodium chloride than the PP support or the composites without ionic liquid inside. Although the overall transmembrane flux of IL-HCMs developed in this work is comparable with that of state of the art MD membranes, this study demonstrated that the strong hydrophilic hydrogel layer, with C.A. < 50° for IL content larger than 1 wt.%, serves as a stabilization coating, by providing the new media between the feed and the hydrophobic membrane surface, thus potentially controlling the diffusion of hydrophobic foulant molecules. This would result in a decrease in the membrane wetting and fouling aptitude.
2019
Istituto per la Tecnologia delle Membrane - ITM
advanced separations
desalination
hydrogel composite membranes
ionic liquids membranes
membrane distillation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/388405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact