Comparative measurements of specific heat capacities (temperature interval between 2 and 500 K), and of low frequency mechanical spectroscopy (temperature interval between 120 and 400 K) in poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) amorphous blends show the existence of single calorimetric and mechanical glass transition temperatures, as a clear indication of the existence of homogeneous single-state structures. Below Tg, the experimental data reveal distinct local relaxation processes within the backbone of the individual components, while the heat capacities below 15 K can be explained in terms of a two-phase model (i.e., a simple linear overlap of the contributions from wholly amorphous PMMA and PVDF, weighted by their proportions). These findings are associated with locally heterogeneous relaxation and vibrational motions, and are regarded as experimental evidence for the existence of a nanoscopic length scale where the dynamics of a blend exhibits a heterogeneous regime.

Locally heterogeneous dynamics in miscible blends of poly(methyl methacrylate) and poly(vinylidene fluoride)

A Bartolotta;G Di Marco;M Lanza;
2002

Abstract

Comparative measurements of specific heat capacities (temperature interval between 2 and 500 K), and of low frequency mechanical spectroscopy (temperature interval between 120 and 400 K) in poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) amorphous blends show the existence of single calorimetric and mechanical glass transition temperatures, as a clear indication of the existence of homogeneous single-state structures. Below Tg, the experimental data reveal distinct local relaxation processes within the backbone of the individual components, while the heat capacities below 15 K can be explained in terms of a two-phase model (i.e., a simple linear overlap of the contributions from wholly amorphous PMMA and PVDF, weighted by their proportions). These findings are associated with locally heterogeneous relaxation and vibrational motions, and are regarded as experimental evidence for the existence of a nanoscopic length scale where the dynamics of a blend exhibits a heterogeneous regime.
2002
Istituto per i Processi Chimico-Fisici - IPCF
Soft Matter
Polymeric blends
Dy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact