We investigated the nematic to smectic transition undergone by parallel hard spherocylinders in the framework provided by the residual multi-particle entropy (RMPE) formalism. The RMPE is defined as the sum of all contributions to the configurational entropy of the fluid which arise from density correlations involving more than two particles. The vanishing of the RMPE signals the structural changes which take place in the system for increasing pressures. Monte Carlo simulations carried out for parallel hard spherocylinders show that such a one-phase ordering criterion accurately predicts also the nematic-smectic transition threshold notwithstanding the almost continuous character of the transition. A similar quantitative correspondence had been already noted in the case of an isotropic fluid of freely rotating hard spherocylinders undergoing a transition to a nematic, smectic or solid phase. The present analysis confirms the flexibility of the RMPE approach as a practical and reliable tool for detecting the formation of mesophases in model liquid crystals

Smectic ordering of parallel hard spherocylinders: An entropy-based Monte Carlo study

Saija F;
2003

Abstract

We investigated the nematic to smectic transition undergone by parallel hard spherocylinders in the framework provided by the residual multi-particle entropy (RMPE) formalism. The RMPE is defined as the sum of all contributions to the configurational entropy of the fluid which arise from density correlations involving more than two particles. The vanishing of the RMPE signals the structural changes which take place in the system for increasing pressures. Monte Carlo simulations carried out for parallel hard spherocylinders show that such a one-phase ordering criterion accurately predicts also the nematic-smectic transition threshold notwithstanding the almost continuous character of the transition. A similar quantitative correspondence had been already noted in the case of an isotropic fluid of freely rotating hard spherocylinders undergoing a transition to a nematic, smectic or solid phase. The present analysis confirms the flexibility of the RMPE approach as a practical and reliable tool for detecting the formation of mesophases in model liquid crystals
2003
Istituto per i Processi Chimico-Fisici - IPCF
Soft Matter
Simulation
Hard sphere
File in questo prodotto:
File Dimensione Formato  
prod_39235-doc_2592.pdf

non disponibili

Descrizione: Smectic ordering of parallel hard spherocylinders: An entropy-based Monte Carlo study
Dimensione 163.49 kB
Formato Adobe PDF
163.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact