We propose a model that describes the signal fading process due to scintillation in the presence of rain. We analyzed a data set of uplink (30 GHz) and downlink (20 GHz) attenuation values averaged over 1 s intervals. The data are samples relative to ten significant events, for a total of 180 000 s recorded at the Spino d'Adda (North of Italy) station using the Olympus satellite. Our analysis is based on the fact that the plot of attenuation versus time recalls the behavior of a self-similar process. We then make various considerations, and propose a fractional Brownian motion model for the scintillation process. We describe the model in detail, with pictures showing the apparent self-similarity of the measured data. We then show that the Hurst parameter of the process is a simple function of the rain fade. We describe a method for producing random data that interpolate the measured samples, while preserving some of their interesting statistical properties. This method can be used for simulating fade countermeasure systems. As a possible application of the model, we show how to optimize fade measurement times for fade countermeasure systems.

Modeling Ka-band scintillation as a fractal process

Celandroni N.;Potorti' F.
1999

Abstract

We propose a model that describes the signal fading process due to scintillation in the presence of rain. We analyzed a data set of uplink (30 GHz) and downlink (20 GHz) attenuation values averaged over 1 s intervals. The data are samples relative to ten significant events, for a total of 180 000 s recorded at the Spino d'Adda (North of Italy) station using the Olympus satellite. Our analysis is based on the fact that the plot of attenuation versus time recalls the behavior of a self-similar process. We then make various considerations, and propose a fractional Brownian motion model for the scintillation process. We describe the model in detail, with pictures showing the apparent self-similarity of the measured data. We then show that the Hurst parameter of the process is a simple function of the rain fade. We describe a method for producing random data that interpolate the measured samples, while preserving some of their interesting statistical properties. This method can be used for simulating fade countermeasure systems. As a possible application of the model, we show how to optimize fade measurement times for fade countermeasure systems.
1999
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Scintillation
Rain fade
Fractal model
Signal degradation
Fade countermeasures
File in questo prodotto:
File Dimensione Formato  
prod_408432-doc_143332.pdf

solo utenti autorizzati

Descrizione: Modeling Ka band scintillation as a fractal process
Tipologia: Versione Editoriale (PDF)
Dimensione 197.7 kB
Formato Adobe PDF
197.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/388653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact