In this interdisciplinary paper, we study the formation of iron precipitates - the so-called Liesegang rings - in Lecce stones in contact with iron source. These phenomena are responsible of exterior damages of lapideous artifacts, but also in the weakening of their structure. They originate in presence of water, determining the flow of carbonate compounds mixing with the iron ions and then, after a sequence of reactions and precipitation, leading to the formation of Liesegang rings. In order to model these phenomena observed in situ and in laboratory experiments, we propose a modification of the classical Keller-Rubinow model and show the results obtained with some numerical simulations, in comparison with the experimental tests. Our model is of interest for a better understanding of damage processes in monumental stones.
A mathematical, experimental study on iron rings formation in porous stones
Gabriella Bretti;Maurizio Ceseri;Roberto Natalini;Filippo Notarnicola
2019
Abstract
In this interdisciplinary paper, we study the formation of iron precipitates - the so-called Liesegang rings - in Lecce stones in contact with iron source. These phenomena are responsible of exterior damages of lapideous artifacts, but also in the weakening of their structure. They originate in presence of water, determining the flow of carbonate compounds mixing with the iron ions and then, after a sequence of reactions and precipitation, leading to the formation of Liesegang rings. In order to model these phenomena observed in situ and in laboratory experiments, we propose a modification of the classical Keller-Rubinow model and show the results obtained with some numerical simulations, in comparison with the experimental tests. Our model is of interest for a better understanding of damage processes in monumental stones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.