The present work deals with an Ordinary Differential Equation (ODE) model specifically designed to describe the COVID-19 evolution in Italy. The model is particularised on the basis of National data about the infection status of the Italian population to obtain numerical solutions that effectively reproduce the real data. Our epidemic model is a classical SEIR model that incorporates two compartments of infected subpopulations, representing diagnosed and undiagnosed individuals respectively, and an additional quarantine compartment.Possible control actions representing social, political, and medical interventions are also included. The numerical results of the proposed model identification by least square fitting are analysed and commented with special emphasis on the estimation of the number of asymptomatic infective individuals. Our fitting results are in good agreement with the epidemiological data. Short and long-term predictions on the evolution of the disease are also given.

Dynamical evolution of COVID-19 in Italy with an evaluation of the size of the asymptomatic infective population

Papa F.;Sinisgalli C.
2021

Abstract

The present work deals with an Ordinary Differential Equation (ODE) model specifically designed to describe the COVID-19 evolution in Italy. The model is particularised on the basis of National data about the infection status of the Italian population to obtain numerical solutions that effectively reproduce the real data. Our epidemic model is a classical SEIR model that incorporates two compartments of infected subpopulations, representing diagnosed and undiagnosed individuals respectively, and an additional quarantine compartment.Possible control actions representing social, political, and medical interventions are also included. The numerical results of the proposed model identification by least square fitting are analysed and commented with special emphasis on the estimation of the number of asymptomatic infective individuals. Our fitting results are in good agreement with the epidemiological data. Short and long-term predictions on the evolution of the disease are also given.
2021
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
COVID-19
Epidemic ODE model
Coronavirus
Epidemic spread in Italy
System control and identification
File in questo prodotto:
File Dimensione Formato  
jbhi-digiamberardino-3009038.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/388765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact