The effects of confinement of multilayer graphene platelets in hydrophobic microporous polymeric membranes are here examined. Intermolecular interactions between water vapour molecules and nanocomposite membranes are envisaged to originate assisted transport of water vapour in membrane distillation processes when a suitable filler-polymer ratio is reached. Mass transport coefficients are estimated under different working conditions, suggesting a strong dependence of the transport on molecular interactions. Remarkably, no thermal polarization is observed, although the filler exhibits ultrahigh thermal conductivity. In contrast, enhanced resistance to wetting as well as outstanding mechanical and chemical stability meets the basic requirements of water purification via membrane distillation. As a result, a significant improvement of the productivity-efficiency trade-off is achieved with respect to the pristine polymeric membrane when low amounts of platelets are confined in spherulitic-like PVDF networks.

Adsorption-assisted transport of water vapour in superhydrophobic membranes filled with multilayer graphene platelets

Macedonio F;Militano F;Giorno L;Drioli E;Gugliuzza A
2019

Abstract

The effects of confinement of multilayer graphene platelets in hydrophobic microporous polymeric membranes are here examined. Intermolecular interactions between water vapour molecules and nanocomposite membranes are envisaged to originate assisted transport of water vapour in membrane distillation processes when a suitable filler-polymer ratio is reached. Mass transport coefficients are estimated under different working conditions, suggesting a strong dependence of the transport on molecular interactions. Remarkably, no thermal polarization is observed, although the filler exhibits ultrahigh thermal conductivity. In contrast, enhanced resistance to wetting as well as outstanding mechanical and chemical stability meets the basic requirements of water purification via membrane distillation. As a result, a significant improvement of the productivity-efficiency trade-off is achieved with respect to the pristine polymeric membrane when low amounts of platelets are confined in spherulitic-like PVDF networks.
2019
Istituto per la Tecnologia delle Membrane - ITM
super-hydrophobic membranes
Membrane distillation
Water desalination
2D Materials
Graphene platelets
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/388909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact