Dimensionality reduction is a hot research topic in data analysis today.Thanks to the advances in high-performance computing technologies andin the engineering eld, we entered in the so-called big-data era and an enormous quantity of data is available in every scientificc area, rangingfrom social networking, economy and politics to e-health and life sciences.However, much of the data is highly redundant and can be efficientlybrought down to a much smaller number of variables without a significantloss of information using didifferent strategies.

Dimensionality Reduction

Italia De Feis
2019

Abstract

Dimensionality reduction is a hot research topic in data analysis today.Thanks to the advances in high-performance computing technologies andin the engineering eld, we entered in the so-called big-data era and an enormous quantity of data is available in every scientificc area, rangingfrom social networking, economy and politics to e-health and life sciences.However, much of the data is highly redundant and can be efficientlybrought down to a much smaller number of variables without a significantloss of information using didifferent strategies.
2019
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
978-0-12-811432-2
high dimensionality
feature extraction
feature selection
File in questo prodotto:
File Dimensione Formato  
20336.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 691.81 kB
Formato Adobe PDF
691.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact