Let X={X1,X2,...,Xm} be a system of smooth vector fields in R^n satisfying the Hörmander's finite rank condition. We prove the following Sobolev inequality with reciprocal weights in Carnot-Carathéodory space G associated to system X (1?BRK(x)dx?BR|u|tK(x)dx)1/t<=CR??1?BR1K(x)dx?BR|Xu|2K(x)dx??1/2, where Xu denotes the horizontal gradient of u with respect to X. We assume that the weight K belongs to Muckenhoupt's class A_2 and Gehring's class G_?, where ? is a suitable exponent related to the homogeneous dimension.
A two-weight Sobolev inequality for Carnot-Carathéodory spaces
Angela Alberico;
2020
Abstract
Let X={X1,X2,...,Xm} be a system of smooth vector fields in R^n satisfying the Hörmander's finite rank condition. We prove the following Sobolev inequality with reciprocal weights in Carnot-Carathéodory space G associated to system X (1?BRK(x)dx?BR|u|tK(x)dx)1/t<=CR??1?BR1K(x)dx?BR|Xu|2K(x)dx??1/2, where Xu denotes the horizontal gradient of u with respect to X. We assume that the weight K belongs to Muckenhoupt's class A_2 and Gehring's class G_?, where ? is a suitable exponent related to the homogeneous dimension.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


