Let X={X1,X2,...,Xm} be a system of smooth vector fields in R^n satisfying the Hörmander's finite rank condition. We prove the following Sobolev inequality with reciprocal weights in Carnot-Carathéodory space G associated to system X (1?BRK(x)dx?BR|u|tK(x)dx)1/t<=CR??1?BR1K(x)dx?BR|Xu|2K(x)dx??1/2, where Xu denotes the horizontal gradient of u with respect to X. We assume that the weight K belongs to Muckenhoupt's class A_2 and Gehring's class G_?, where ? is a suitable exponent related to the homogeneous dimension.

A two-weight Sobolev inequality for Carnot-Carathéodory spaces

Angela Alberico;
2020

Abstract

Let X={X1,X2,...,Xm} be a system of smooth vector fields in R^n satisfying the Hörmander's finite rank condition. We prove the following Sobolev inequality with reciprocal weights in Carnot-Carathéodory space G associated to system X (1?BRK(x)dx?BR|u|tK(x)dx)1/t<=CR??1?BR1K(x)dx?BR|Xu|2K(x)dx??1/2, where Xu denotes the horizontal gradient of u with respect to X. We assume that the weight K belongs to Muckenhoupt's class A_2 and Gehring's class G_?, where ? is a suitable exponent related to the homogeneous dimension.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
Carnot-Caratheodory spaces
Weighetd Sobolev inequalities
Muckenhoupt and Gering weights.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact