Attribute-aware community discovery aims to find well-connected communities that are also homogeneous w.r.t. the labels carried by the nodes. In this work, we address such a challenging task presenting Eva, an algorithmic approach designed to maximize a quality function tailoring both structural and homophilic clustering criteria. We evaluate Eva on several real-world labeled networks carrying both nominal and ordinal information, and we compare our approach to other classic and attribute-aware algorithms. Our results suggest that Eva is the only method, among the compared ones, able to discover homogeneous clusters without considerably degrading partition modularity.We also investigate two well-defined applicative scenarios to characterize better Eva: i) the clustering of a mental lexicon, i.e., a linguistic network modeling human semantic memory, and (ii) the node label prediction task, namely the problem of inferring the missing label of a node.

Identifying and exploiting homogeneous communities in labeled networks

Citraro S;Rossetti G
2020

Abstract

Attribute-aware community discovery aims to find well-connected communities that are also homogeneous w.r.t. the labels carried by the nodes. In this work, we address such a challenging task presenting Eva, an algorithmic approach designed to maximize a quality function tailoring both structural and homophilic clustering criteria. We evaluate Eva on several real-world labeled networks carrying both nominal and ordinal information, and we compare our approach to other classic and attribute-aware algorithms. Our results suggest that Eva is the only method, among the compared ones, able to discover homogeneous clusters without considerably degrading partition modularity.We also investigate two well-defined applicative scenarios to characterize better Eva: i) the clustering of a mental lexicon, i.e., a linguistic network modeling human semantic memory, and (ii) the node label prediction task, namely the problem of inferring the missing label of a node.
2020
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Labeled community discovery
Network homophily
Node label prediction
File in questo prodotto:
File Dimensione Formato  
prod_439436-doc_157646.pdf

accesso aperto

Descrizione: Identifying and exploiting homogeneous communities in labeled networks
Tipologia: Versione Editoriale (PDF)
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact