A new synchrotron-based study of the vacuum ultraviolet (VUV) absorption spectrum for cyclooctatetraene (COT) shows a series of broad peaks. A significant sharp structure was extracted from the strongest band between 5.9 and 6.3 eV by fitting this range of the spectrum to a polynomial; the regular residuals show a set of sharp peaks. Comparison of this region of the VUV with the photoelectron spectrum demonstrates the presence of several Rydberg states, all based on the lowest observed ionization energy ionic state. The UV onset contains a broad band in the range 4.0 eV-5.3 eV. Theoretical vertical excitation energies, determined by configuration interaction (CI) studies at the multireference multiroot singles and doubles CI level, enabled interpretation of the principal absorption bands of the VUV spectrum. Adiabatic excitation energies (AEEs) for several singlet and triplet valence states (V) were evaluated by multiconfiguration self-consistent field methods. Theoretical Rydberg series AEEs were obtained by use of extremely diffuse Gaussian orbitals in highly correlated wave-functions. The second moments of the charge distribution identify which roots are valence or Rydberg states. A contrast was found between some density functional methods and Hartree-Fock (HF) wave-functions during single-excitation CI, when degenerate orbitals were involved in the leading configurations. The 7a(1)6e* state contained the expected 8-membered ring in the density functional theory calculations. The HF wave-functions led to a 1,5-cross-ring interaction which converged on a singlet excited state of a bicyclo[3,3,0]octatriene; this is reminiscent of the photochemical conversion of COT to semibullvalene. Published under license by AIP Publishing.

The electronically excited states of cyclooctatetraene-An analysis of the vacuum ultraviolet absorption spectrum by ab initio configuration interaction methods

Coreno Marcello;de Simone Monica;Grazioli Cesare
2019

Abstract

A new synchrotron-based study of the vacuum ultraviolet (VUV) absorption spectrum for cyclooctatetraene (COT) shows a series of broad peaks. A significant sharp structure was extracted from the strongest band between 5.9 and 6.3 eV by fitting this range of the spectrum to a polynomial; the regular residuals show a set of sharp peaks. Comparison of this region of the VUV with the photoelectron spectrum demonstrates the presence of several Rydberg states, all based on the lowest observed ionization energy ionic state. The UV onset contains a broad band in the range 4.0 eV-5.3 eV. Theoretical vertical excitation energies, determined by configuration interaction (CI) studies at the multireference multiroot singles and doubles CI level, enabled interpretation of the principal absorption bands of the VUV spectrum. Adiabatic excitation energies (AEEs) for several singlet and triplet valence states (V) were evaluated by multiconfiguration self-consistent field methods. Theoretical Rydberg series AEEs were obtained by use of extremely diffuse Gaussian orbitals in highly correlated wave-functions. The second moments of the charge distribution identify which roots are valence or Rydberg states. A contrast was found between some density functional methods and Hartree-Fock (HF) wave-functions during single-excitation CI, when degenerate orbitals were involved in the leading configurations. The 7a(1)6e* state contained the expected 8-membered ring in the density functional theory calculations. The HF wave-functions led to a 1,5-cross-ring interaction which converged on a singlet excited state of a bicyclo[3,3,0]octatriene; this is reminiscent of the photochemical conversion of COT to semibullvalene. Published under license by AIP Publishing.
2019
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto Officina dei Materiali - IOM -
Rydberg series
Absorption spectroscopy
Excitation energies
Photoelectron spectroscopy
Rydberg states
Configuration interaction
Vacuum ultraviolet radiation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact