We present a variational resolution of the incompressible Navier-Stokes system by means of stabilized weighted-inertia-dissipation-energy (WIDE) functionals. The minimization of these parameter-dependent functionals corresponds to an elliptic-in-time regularization of the system. By passing to the limit in the regularization parameter along subsequences of WIDE minimizers one recovers a classical Leray-Hopf weak solution.

A variational approach to Navier-Stokes

U Stefanelli
2018

Abstract

We present a variational resolution of the incompressible Navier-Stokes system by means of stabilized weighted-inertia-dissipation-energy (WIDE) functionals. The minimization of these parameter-dependent functionals corresponds to an elliptic-in-time regularization of the system. By passing to the limit in the regularization parameter along subsequences of WIDE minimizers one recovers a classical Leray-Hopf weak solution.
2018
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Navier-Stokes system; variational method; weak solutions; weighted-inertia-dissipation-energy-functionals
File in questo prodotto:
File Dimensione Formato  
prod_407365-doc_142725.pdf

accesso aperto

Descrizione: A variational approach to Navier-Stokes
Tipologia: Versione Editoriale (PDF)
Dimensione 274.06 kB
Formato Adobe PDF
274.06 kB Adobe PDF Visualizza/Apri
prod_407365-doc_152484.pdf

non disponibili

Descrizione: A variational approach to Navier-Stokes
Tipologia: Versione Editoriale (PDF)
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact