We present a variational resolution of the incompressible Navier-Stokes system by means of stabilized weighted-inertia-dissipation-energy (WIDE) functionals. The minimization of these parameter-dependent functionals corresponds to an elliptic-in-time regularization of the system. By passing to the limit in the regularization parameter along subsequences of WIDE minimizers one recovers a classical Leray-Hopf weak solution.
A variational approach to Navier-Stokes
U Stefanelli
2018
Abstract
We present a variational resolution of the incompressible Navier-Stokes system by means of stabilized weighted-inertia-dissipation-energy (WIDE) functionals. The minimization of these parameter-dependent functionals corresponds to an elliptic-in-time regularization of the system. By passing to the limit in the regularization parameter along subsequences of WIDE minimizers one recovers a classical Leray-Hopf weak solution.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_407365-doc_142725.pdf
accesso aperto
Descrizione: A variational approach to Navier-Stokes
Tipologia:
Versione Editoriale (PDF)
Dimensione
274.06 kB
Formato
Adobe PDF
|
274.06 kB | Adobe PDF | Visualizza/Apri |
|
prod_407365-doc_152484.pdf
non disponibili
Descrizione: A variational approach to Navier-Stokes
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


