O1s, C1s, and S2p core-valence double ionization electron spectra of the OCS molecule have been obtained experimentally by a time-of-flight photoelectron-photoelectron coincidence spectroscopy technique. In order to analyze and assign the spectral features observed, we present a protocol for computing core-valence ionization energies of such systems. The protocol is based on a restricted active space multiconfigurational self-consistent field (MCSCF) methodology with a freeze-relax procedure to guarantee a correct core-valence state root index without variational collapse. Corrections for extended dynamical correlation and core-core correlation, respectively, are made by multiconfigurational perturbation theory and by uncontracted basis set Møller-Plesset theory. Envisioning applications to larger molecules, a spin-restricted open-shell density functional method is also applied for the lowest core-valence energies. Furthermore, cross sections through a scheme for computing multiatom Auger transitions generating core-valence holes are presented. We find that the procedure outlined is capable of deriving the energy onset of core-valence ionization within a fraction of an eV and that assignments can be made of the most salient spectral features.
Experimental and theoretical study of core-valence double photoionization of OCS
Carravetta V;
2010
Abstract
O1s, C1s, and S2p core-valence double ionization electron spectra of the OCS molecule have been obtained experimentally by a time-of-flight photoelectron-photoelectron coincidence spectroscopy technique. In order to analyze and assign the spectral features observed, we present a protocol for computing core-valence ionization energies of such systems. The protocol is based on a restricted active space multiconfigurational self-consistent field (MCSCF) methodology with a freeze-relax procedure to guarantee a correct core-valence state root index without variational collapse. Corrections for extended dynamical correlation and core-core correlation, respectively, are made by multiconfigurational perturbation theory and by uncontracted basis set Møller-Plesset theory. Envisioning applications to larger molecules, a spin-restricted open-shell density functional method is also applied for the lowest core-valence energies. Furthermore, cross sections through a scheme for computing multiatom Auger transitions generating core-valence holes are presented. We find that the procedure outlined is capable of deriving the energy onset of core-valence ionization within a fraction of an eV and that assignments can be made of the most salient spectral features.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_40457-doc_1182.pdf
solo utenti autorizzati
Descrizione: Experimental and theoretical study of core-valence double photoionization of OCS
Dimensione
311.49 kB
Formato
Adobe PDF
|
311.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


