This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straightforward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.

IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains

L Tamellini;
2019

Abstract

This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straightforward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.
2019
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Isogeometric analysis; Uncertainty quantification; Sparse grids; Stochastic collocation methods; Multilevel methods; Combination-technique
File in questo prodotto:
File Dimensione Formato  
prod_407373-doc_152564.pdf

accesso aperto

Descrizione: IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains
Tipologia: Versione Editoriale (PDF)
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri
prod_407373-doc_152565.pdf

solo utenti autorizzati

Descrizione: IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains
Tipologia: Versione Editoriale (PDF)
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact