This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straightforward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.
IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains
L Tamellini;
2019
Abstract
This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straightforward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
prod_407373-doc_152564.pdf
accesso aperto
Descrizione: IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri |
prod_407373-doc_152565.pdf
solo utenti autorizzati
Descrizione: IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.