Two simplifying hypotheses have been proposed for whole-plant respiration. One links respiration to photosynthesis; the other to biomass. Using a first-principles carbon balance model with a prescribed live woody biomass turnover, applied at a forest research site where multidecadal measurements are available for comparison, we show that if turnover is fast the accumulation of respiring biomass is low and respiration depends primarily on photosynthesis; while if turnover is slow the accumulation of respiring biomass is high and respiration depends primarily on biomass. But the first scenario is inconsistent with evidence for substantial carryover of fixed carbon between years, while the second implies far too great an increase in respiration during stand development - leading to depleted carbohydrate reserves and an unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both incorrect. Respiration is not linearly related either to photosynthesis or to biomass, but it is more strongly controlled by recent photosynthates (and reserve availability) than by total biomass.

Plant respiration: Controlled by photosynthesis or biomass?

Collalti A;Guidolotti G;Matteucci G;
2019

Abstract

Two simplifying hypotheses have been proposed for whole-plant respiration. One links respiration to photosynthesis; the other to biomass. Using a first-principles carbon balance model with a prescribed live woody biomass turnover, applied at a forest research site where multidecadal measurements are available for comparison, we show that if turnover is fast the accumulation of respiring biomass is low and respiration depends primarily on photosynthesis; while if turnover is slow the accumulation of respiring biomass is high and respiration depends primarily on biomass. But the first scenario is inconsistent with evidence for substantial carryover of fixed carbon between years, while the second implies far too great an increase in respiration during stand development - leading to depleted carbohydrate reserves and an unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both incorrect. Respiration is not linearly related either to photosynthesis or to biomass, but it is more strongly controlled by recent photosynthates (and reserve availability) than by total biomass.
2019
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Plant respiration
biomass accumulation
carbon use efficiency
gross primary production
net primary production
maintenance respiration
non-structural carbohydrates
metabolic scaling theory
File in questo prodotto:
File Dimensione Formato  
prod_407374-doc_166810.pdf

solo utenti autorizzati

Descrizione: Plant respiration: Controlled by photosynthesis or biomass?
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 69
social impact