When it is oxidized, graphite can be easily exfoliated forming graphene oxide (GO). GO is a critical intermediate for massive production of graphene, and it is also an important material with various application potentials. With many different oxidation species randomly distributed on the basal plane, GO has a complicated nonstoichiometric atomic structure that is still not well understood in spite of intensive studies involving many experimental techniques. Controversies often exist in experimental data interpretation. We report here a first principles study on binding energy of carbon 1s orbital in GO. The calculated results can be well used to interpret experimental x-ray photoelectron spectroscopy (XPS) data and provide a unified spectral assignment. Based on the first principles understanding of XPS, a GO structure model containing new oxidation species epoxy pair and epoxy-hydroxy pair is proposed. Our results demonstrate that first principles computational spectroscopy provides a powerful means to investigate GO structure.

Oxidation states of graphene: Insights from computational spectroscopy

Carravetta Vincenzo;
2009

Abstract

When it is oxidized, graphite can be easily exfoliated forming graphene oxide (GO). GO is a critical intermediate for massive production of graphene, and it is also an important material with various application potentials. With many different oxidation species randomly distributed on the basal plane, GO has a complicated nonstoichiometric atomic structure that is still not well understood in spite of intensive studies involving many experimental techniques. Controversies often exist in experimental data interpretation. We report here a first principles study on binding energy of carbon 1s orbital in GO. The calculated results can be well used to interpret experimental x-ray photoelectron spectroscopy (XPS) data and provide a unified spectral assignment. Based on the first principles understanding of XPS, a GO structure model containing new oxidation species epoxy pair and epoxy-hydroxy pair is proposed. Our results demonstrate that first principles computational spectroscopy provides a powerful means to investigate GO structure.
2009
Istituto per i Processi Chimico-Fisici - IPCF
computational spectroscopy
XPS
graphene oxide
File in questo prodotto:
File Dimensione Formato  
prod_40461-doc_1183.pdf

solo utenti autorizzati

Descrizione: Oxidation states of graphene: Insights from computational spectroscopy
Dimensione 758.91 kB
Formato Adobe PDF
758.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 73
social impact