This paper shows the application of machine learning techniques to predict hematic parameters using blood visible spectra during ex-vivo treatments. Methods: A spectroscopic setup was prepared for acquisition of blood absorbance spectrum and tested in an operational environment. This setup is non invasive and can be applied during dialysis sessions. A support vector machine and an articial neural network, trained with a dataset of spectra, have been implemented for the prediction of hematocrit and oxygen saturation. Results & Conclusion: Results of different machine learning algorithms are compared, showing that support vector machine is the best technique for the prediction of hematocrit and oxygen saturation.

Machine Learning Approach for Prediction of Hematic Parameters in Hemodialysis Patients

Marco Bianconi;
2019

Abstract

This paper shows the application of machine learning techniques to predict hematic parameters using blood visible spectra during ex-vivo treatments. Methods: A spectroscopic setup was prepared for acquisition of blood absorbance spectrum and tested in an operational environment. This setup is non invasive and can be applied during dialysis sessions. A support vector machine and an articial neural network, trained with a dataset of spectra, have been implemented for the prediction of hematocrit and oxygen saturation. Results & Conclusion: Results of different machine learning algorithms are compared, showing that support vector machine is the best technique for the prediction of hematocrit and oxygen saturation.
2019
Istituto per la Microelettronica e Microsistemi - IMM
Artificial Neural Network
Hematocrit
hemodialisys
machine learning
spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact