Tor hidden services allow offering and accessing various Internet resources while guaranteeing a high degree of provider and user anonymity. So far, most research work on the Tor network aimed at discovering protocol vulnerabilities to de-anonymize users and services. Other work aimed at estimating the number of available hidden services and classifying them. Something that still remains largely unknown is the structure of the graph defined by the network of Tor services. In this paper, we describe the topology of the Tor graph (aggregated at the hidden service level) measuring both global and local properties by means of well-known metrics. We consider three different snapshots obtained by extensively crawling Tor three times over a 5 months time frame. We separately study these three graphs and their shared "stable" core. In doing so, other than assessing the renowned volatility of Tor hidden services, we make it possible to distinguish time dependent and structural aspects of the Tor graph. Our findings show that, among other things, the graph of Tor hidden services presents some of the characteristics of social and surface web graphs, along with a few unique peculiarities, such as a very high percentage of nodes having no outbound links.
Spiders like Onions: on the Network of Tor Hidden Services
Bernaschi;Massimo;Celestini;Alessandro;Guarino;Stefano;Lombardi;Flavio;Mastrostefano;Enrico
2019
Abstract
Tor hidden services allow offering and accessing various Internet resources while guaranteeing a high degree of provider and user anonymity. So far, most research work on the Tor network aimed at discovering protocol vulnerabilities to de-anonymize users and services. Other work aimed at estimating the number of available hidden services and classifying them. Something that still remains largely unknown is the structure of the graph defined by the network of Tor services. In this paper, we describe the topology of the Tor graph (aggregated at the hidden service level) measuring both global and local properties by means of well-known metrics. We consider three different snapshots obtained by extensively crawling Tor three times over a 5 months time frame. We separately study these three graphs and their shared "stable" core. In doing so, other than assessing the renowned volatility of Tor hidden services, we make it possible to distinguish time dependent and structural aspects of the Tor graph. Our findings show that, among other things, the graph of Tor hidden services presents some of the characteristics of social and surface web graphs, along with a few unique peculiarities, such as a very high percentage of nodes having no outbound links.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.