The optical and magneto-optical (MO) properties of magneto-plasmonic nanocomposite films made up of a transparent polymer with a dispersion of cobalt ferrite (CFO) nanoparticles (NPs) and different concentrations of Au NPs are investigated. The volumetric concentrations of CFO and Au NPs, around 3%, and below 7%o respectively, are below the percolation limit, and hence the nanocomposite films constitute models for investigating the influence of the electromagnetic field generated at the surface plasmon resonance of Au NPs on the magneto-optical properties of CFO NPs. The plasmon resonance is present in these magneto-plasmonic composites, red-shifted with respect to the bare Au NPs and covering the spectral region where charge-transfer and crystal field MO transitions can be excited. Moreover, the magneto-optical hysteresis loops were measured in the whole spectral region. We observe that the hysteresis loops shape is a fingerprint of the different MO transitions of the CFO NPs. The strength of the MO peak around 750 nm, corresponding to the Crystal Field transition is damped respect to the corresponding peak of the CFO NPs. The strength of this peak evolves non-monotonically with the Au NPs concentration. On the other hand, the MO band around 550 nm, excited by Charge Transfer transitions, changes sign when Au NPs are present. In addition, a second MO contribution is observed. Our results demonstrate that the interactions between plasmon resonance and MO effects are not only determined by the stronger local electromagnetic fields at the resonance but they depend on the type MO transition that is involved in these oxides. This study helps to understand and design the magneto plasmonic nanostructures and applications, for example in biomedicine and sensing, in which random and weak dipolar interparticle interactions between plasmonic and magnetic nanostructures are present.

Addressing the Influence of Localized Plasmon Resonance on the Magneto-Optical Properties of Cobalt Ferrite Nanoparticles

Campo Giulio;Innocenti Claudia;de Julian Fernandez Cesar
2019

Abstract

The optical and magneto-optical (MO) properties of magneto-plasmonic nanocomposite films made up of a transparent polymer with a dispersion of cobalt ferrite (CFO) nanoparticles (NPs) and different concentrations of Au NPs are investigated. The volumetric concentrations of CFO and Au NPs, around 3%, and below 7%o respectively, are below the percolation limit, and hence the nanocomposite films constitute models for investigating the influence of the electromagnetic field generated at the surface plasmon resonance of Au NPs on the magneto-optical properties of CFO NPs. The plasmon resonance is present in these magneto-plasmonic composites, red-shifted with respect to the bare Au NPs and covering the spectral region where charge-transfer and crystal field MO transitions can be excited. Moreover, the magneto-optical hysteresis loops were measured in the whole spectral region. We observe that the hysteresis loops shape is a fingerprint of the different MO transitions of the CFO NPs. The strength of the MO peak around 750 nm, corresponding to the Crystal Field transition is damped respect to the corresponding peak of the CFO NPs. The strength of this peak evolves non-monotonically with the Au NPs concentration. On the other hand, the MO band around 550 nm, excited by Charge Transfer transitions, changes sign when Au NPs are present. In addition, a second MO contribution is observed. Our results demonstrate that the interactions between plasmon resonance and MO effects are not only determined by the stronger local electromagnetic fields at the resonance but they depend on the type MO transition that is involved in these oxides. This study helps to understand and design the magneto plasmonic nanostructures and applications, for example in biomedicine and sensing, in which random and weak dipolar interparticle interactions between plasmonic and magnetic nanostructures are present.
2019
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto Nazionale di Ottica - INO
Magneto-Plasmonics
Magneto-Optics
Au Nanoparticles
Cobalt Ferrite Nanoparticles
Magnetic Circular Dichroism
Interparticle Interactions
Localized Plasmon Resonance
File in questo prodotto:
File Dimensione Formato  
prod_405494-doc_141749.pdf

solo utenti autorizzati

Descrizione: Addressing the Influence of Localized Plasmon Resonance on the Magneto-Optical Properties of Cobalt Ferrite Nanoparticles
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 210.85 kB
Formato Adobe PDF
210.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact