Here we present a combined experimental and theoretical study of graphene nanoribbons (GNRs), where detailed multiwavelength Raman measurements are integrated by accurate ab initio simulations. Our study covers several ultranarrow GNRs, obtained by means of solution-based bottom-up synthetic approach, allowing to rationalize the effect of edge morphology, position and type of functional groups, as well as the length on the GNR Raman spectrum. We show that the low-energy region, especially in the presence of bulky functional groups, is populated by several modes, and a single radial breathinglike mode cannot be identified. In the Raman optical region, we find that, except for the fully brominated case, all GNRs functionalized at the edges with different side groups show a characteristic dispersion of the D peak (8-22 cm(-1)/eV). This has been attributed to the internal degrees of freedom of these functional groups, which act as dispersion-activating defects. The G peak shows small to negligible dispersion in most of the cases, with larger values only in the presence of poor control of the edge functionalization, exceeding the values reported for highly defective graphene. In conclusion, we have shown that the characteristic dispersion of the G and D peaks offers further insight into the GNR structure and functionalization, by making Raman spectroscopy an important tool for the characterization of GNRs.

Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach

Prezzi Deborah;Ruini Alice;Molinari Elisa;
2019

Abstract

Here we present a combined experimental and theoretical study of graphene nanoribbons (GNRs), where detailed multiwavelength Raman measurements are integrated by accurate ab initio simulations. Our study covers several ultranarrow GNRs, obtained by means of solution-based bottom-up synthetic approach, allowing to rationalize the effect of edge morphology, position and type of functional groups, as well as the length on the GNR Raman spectrum. We show that the low-energy region, especially in the presence of bulky functional groups, is populated by several modes, and a single radial breathinglike mode cannot be identified. In the Raman optical region, we find that, except for the fully brominated case, all GNRs functionalized at the edges with different side groups show a characteristic dispersion of the D peak (8-22 cm(-1)/eV). This has been attributed to the internal degrees of freedom of these functional groups, which act as dispersion-activating defects. The G peak shows small to negligible dispersion in most of the cases, with larger values only in the presence of poor control of the edge functionalization, exceeding the values reported for highly defective graphene. In conclusion, we have shown that the characteristic dispersion of the G and D peaks offers further insight into the GNR structure and functionalization, by making Raman spectroscopy an important tool for the characterization of GNRs.
2019
Istituto Nanoscienze - NANO
Graphene nanoribbons; Raman spectroscopy; Functionalization; Density-functional theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact