Additive manufacturing technologies have been increasingly applied to the development of radio frequency components in the past few years. Indeed, the free-form capability of these processes allows for the design of novel components, whose actual implementation through conventional machining is rather complex or even not possible. This paper describes a monolithic WR51 component integrating three radio frequency functionalities, namely, bending, twisting, and filtering. Three aluminum prototypes with different bending/twisting radii have been manufactured through the selective laser melting process. They exhibit a measured rejection higher than 60 dB in 17.5 and 21.2 GHz, and a measured return loss better than 20 dB in 12.5 and 15 GHz. Significant mass and envelope reductions (higher than 60% depending on the bending/twisting radius) with respect to the reference subsystem with distinct waveguide components are achieved. These results assess the effectiveness of 3-D metal printing in the miniaturization and integration of waveguide systems.

Integration of an H-Plane Bend, a Twist, and a Filter in Ku/K-Band Through Additive Manufacturing

Peverini O A;Lumia M;Paonessa F;Virone G;Tascone R;
2018

Abstract

Additive manufacturing technologies have been increasingly applied to the development of radio frequency components in the past few years. Indeed, the free-form capability of these processes allows for the design of novel components, whose actual implementation through conventional machining is rather complex or even not possible. This paper describes a monolithic WR51 component integrating three radio frequency functionalities, namely, bending, twisting, and filtering. Three aluminum prototypes with different bending/twisting radii have been manufactured through the selective laser melting process. They exhibit a measured rejection higher than 60 dB in 17.5 and 21.2 GHz, and a measured return loss better than 20 dB in 12.5 and 15 GHz. Significant mass and envelope reductions (higher than 60% depending on the bending/twisting radius) with respect to the reference subsystem with distinct waveguide components are achieved. These results assess the effectiveness of 3-D metal printing in the miniaturization and integration of waveguide systems.
2018
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
3-D printing
additive manufacturing (AM)
microwave components
waveguide bends
waveguide filters
waveguide twists
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? ND
social impact