In this paper, we deploy the hybrid Lattice Boltzmann - Particle Dynamics (LBPD) method to investigate the transport properties of blood flow within arterioles and venules. The numerical approach is applied to study the transport of Red Blood Cells (RBC) through plasma, highlighting significant agreement with the experimental data in the seminal work by Fahraeus and Lindqvist. Moreover, the results provide evidence of an interesting hand-shaking between the range of validity of the proposed hybrid approach and the domain of viability of particle methods. A joint inspection of accuracy and computational cost, indicate that LBPD offers an appealing multiscale strategy for the study of blood transport across scales of motion, from macroscopic vessels, down to arterioles and venules, where particle methods can eventually take over.

Simulating blood rheology across scales: A hybrid LB-particle approach

Lauricella Marco;Melchionna Simone;
2019

Abstract

In this paper, we deploy the hybrid Lattice Boltzmann - Particle Dynamics (LBPD) method to investigate the transport properties of blood flow within arterioles and venules. The numerical approach is applied to study the transport of Red Blood Cells (RBC) through plasma, highlighting significant agreement with the experimental data in the seminal work by Fahraeus and Lindqvist. Moreover, the results provide evidence of an interesting hand-shaking between the range of validity of the proposed hybrid approach and the domain of viability of particle methods. A joint inspection of accuracy and computational cost, indicate that LBPD offers an appealing multiscale strategy for the study of blood transport across scales of motion, from macroscopic vessels, down to arterioles and venules, where particle methods can eventually take over.
2019
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto dei Sistemi Complessi - ISC
Red blood cells
hemodynamics
lattice boltzmann
multi-scale simulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact