The ferromagnetic transition in the Ising model is the paradigmatic example of ergodicity breaking accompanied by symmetry breaking. It is routinely assumed that the thermodynamic limit is taken with free or periodic boundary conditions. More exotic symmetry-preserving boundary conditions, like cylindrical antiperiodic, are less frequently used for special tasks, such as the study of phase coexistence or the roughening of an interface. Here we show, instead, that when the thermodynamic limit is taken with these boundary conditions, a novel type of transition takes place below Tc (the usual Ising transition temperature) without breaking either ergodicity or symmetry. Then the low-temperature phase is characterized by a regime (condensation) of strong magnetization's fluctuations which replaces the usual ferromagnetic ordering. This is due to critical correlations perduring for all T below Tc. The argument is developed exactly in the d=1 case and numerically in the d=2 case.

Condensation of fluctuations in the Ising model: A transition without spontaneous symmetry breaking

Annalisa Fierro;Antonio Coniglio;
2019

Abstract

The ferromagnetic transition in the Ising model is the paradigmatic example of ergodicity breaking accompanied by symmetry breaking. It is routinely assumed that the thermodynamic limit is taken with free or periodic boundary conditions. More exotic symmetry-preserving boundary conditions, like cylindrical antiperiodic, are less frequently used for special tasks, such as the study of phase coexistence or the roughening of an interface. Here we show, instead, that when the thermodynamic limit is taken with these boundary conditions, a novel type of transition takes place below Tc (the usual Ising transition temperature) without breaking either ergodicity or symmetry. Then the low-temperature phase is characterized by a regime (condensation) of strong magnetization's fluctuations which replaces the usual ferromagnetic ordering. This is due to critical correlations perduring for all T below Tc. The argument is developed exactly in the d=1 case and numerically in the d=2 case.
2019
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Ising model
Transition
Symmetry breaking
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact