The atmospheric concentrations of greenhouse gases have increased to unprecedented levels during last decades, raising concerns about their effect on climate change. Agriculture and land use change play an important role in atmospheric CO2 emission and fixation, especially by affecting the soil carbon (C) storage. In this context, agroforestry systems (AFSs) could play an important role contributing to climate change mitigation. Given the importance of olive cultivation in the Mediterranean region, it is important to investigate soil C stock in olive groves, and to assess which agronomic practices could improve the soil C stock in these systems. For this reason, a study was conducted in different olive groves, including conventional and organic management, and a typical silvopastoral AFS. Furthermore, an abandoned olive grove and nearby forest were examined as a comparison. Soil samples were collected in each farm and analysed for C content and physico-chemical characteristics. This study indicates that, irrespective of the management, olive groves in the Umbria region of Italy are characterised by a high level of soil C stock if compared to those growing in other areas and to forest ecosystems, indicating that the practices adopted in the area are not negatively affecting soil C storage. A slightly lower soil C stock was measured in the silvopastoral AFS in comparison to the other farms, while high soil C stock was associated with the use of pomace, suggesting that this practice can be used to further increase soil C stock in olive orchards.

Soil carbon stock in olive groves agroforestry systems under different management and soil characteristics

Pisanelli A
2019

Abstract

The atmospheric concentrations of greenhouse gases have increased to unprecedented levels during last decades, raising concerns about their effect on climate change. Agriculture and land use change play an important role in atmospheric CO2 emission and fixation, especially by affecting the soil carbon (C) storage. In this context, agroforestry systems (AFSs) could play an important role contributing to climate change mitigation. Given the importance of olive cultivation in the Mediterranean region, it is important to investigate soil C stock in olive groves, and to assess which agronomic practices could improve the soil C stock in these systems. For this reason, a study was conducted in different olive groves, including conventional and organic management, and a typical silvopastoral AFS. Furthermore, an abandoned olive grove and nearby forest were examined as a comparison. Soil samples were collected in each farm and analysed for C content and physico-chemical characteristics. This study indicates that, irrespective of the management, olive groves in the Umbria region of Italy are characterised by a high level of soil C stock if compared to those growing in other areas and to forest ecosystems, indicating that the practices adopted in the area are not negatively affecting soil C storage. A slightly lower soil C stock was measured in the silvopastoral AFS in comparison to the other farms, while high soil C stock was associated with the use of pomace, suggesting that this practice can be used to further increase soil C stock in olive orchards.
2019
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
carbon storage
silvopastoral
olive pomace
Mediterranean
Italy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact