Precision agriculture can benefit from the us- age of swarms of drones to monitor a field. Crop/weed classification is a concrete applica- tion that can be efficiently carried out through collaborative approaches, whereby the infor- mation gathered by a drone can be exploited as prior to improve the classification per- formed by other drones observing the same area. In this study, we instantiate this con- cept by exploiting state-of-the-art deep learn- ing techniques. We propose the usage of a shallow convolutional neural network that re- ceives as input, besides the RGB channels of the acquired image, also an additional chan- nel that represents a probability map about the presence of weeds in the observed area. Exploiting a realistic, synthetic dataset, the performance is assessed showing a substancial improvement in the classification accuracy.

Using prior information to improve crop/weed classification by MAV swarms

Vito Trianni
2019

Abstract

Precision agriculture can benefit from the us- age of swarms of drones to monitor a field. Crop/weed classification is a concrete applica- tion that can be efficiently carried out through collaborative approaches, whereby the infor- mation gathered by a drone can be exploited as prior to improve the classification per- formed by other drones observing the same area. In this study, we instantiate this con- cept by exploiting state-of-the-art deep learn- ing techniques. We propose the usage of a shallow convolutional neural network that re- ceives as input, besides the RGB channels of the acquired image, also an additional chan- nel that represents a probability map about the presence of weeds in the observed area. Exploiting a realistic, synthetic dataset, the performance is assessed showing a substancial improvement in the classification accuracy.
2019
Istituto di Scienze e Tecnologie della Cognizione - ISTC
swarm robotics
Deep Neural networks
weed recognition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact