This work proposes the use of the refractive index sensitivity of non-radiating anapole modes of high-refractive-index nanoparticles arranged in planar metasurfaces as a novel sensing principle. The spectral position of anapole modes excited in hollow silicon nanocuboids is first investigated as a function of the nanocuboid geometry. Then, nanostructured metasurfaces of periodic arrays of nanocuboids on a glass substrate are designed. The metasurface parameters are properly selected such that a resonance with ultrahigh Q-factor, above one million, is excited at the target infrared wavelength of 1.55 ?m. The anapole-induced resonant wavelength depends on the refractive index of the analyte superstratum, exhibiting a sensitivity of up to 180 nm/RIU. Such values, combined with the ultrahigh Q-factor, allow for refractometric sensing with very low detection limits in a broad range of refractive indices. Besides the sensing applications, the proposed device can also open new venues in other research fields, such as non-linear optics, optical switches, and optical communications. ? 2018 by the authors. Licensee MDPI, Basel, Switzerland.

Anapole modes in hollow nanocuboid dielectric metasurfaces for refractometric sensing

Ferraro A.;Beccherelli R.;
2019

Abstract

This work proposes the use of the refractive index sensitivity of non-radiating anapole modes of high-refractive-index nanoparticles arranged in planar metasurfaces as a novel sensing principle. The spectral position of anapole modes excited in hollow silicon nanocuboids is first investigated as a function of the nanocuboid geometry. Then, nanostructured metasurfaces of periodic arrays of nanocuboids on a glass substrate are designed. The metasurface parameters are properly selected such that a resonance with ultrahigh Q-factor, above one million, is excited at the target infrared wavelength of 1.55 ?m. The anapole-induced resonant wavelength depends on the refractive index of the analyte superstratum, exhibiting a sensitivity of up to 180 nm/RIU. Such values, combined with the ultrahigh Q-factor, allow for refractometric sensing with very low detection limits in a broad range of refractive indices. Besides the sensing applications, the proposed device can also open new venues in other research fields, such as non-linear optics, optical switches, and optical communications. ? 2018 by the authors. Licensee MDPI, Basel, Switzerland.
2019
Istituto per la Microelettronica e Microsistemi - IMM
Anapole mode
Dielectric nanoparticles; Metasurfaces; Sensing devices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/389839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 59
social impact