According to textbook definitions1, there exists no physical observable able to distinguish a liquid from a gas beyond the critical point, and hence only a single fluid phase is defined. There are, however, some thermophysical quantities, having maxima that define a line emanating from the critical point, named 'the Widom line'2 in the case of the constant-pressure specific heat. We determined the velocity of nanometric acoustic waves in supercritical fluid argon at high pressures by inelastic X-ray scattering and molecular dynamics simulations. Our study reveals a sharp transition on crossing the Widom line demonstrating how the supercritical region is actually divided into two regions that, although not connected by a first-order singularity, can be identified by different dynamical regimes: gas-like and liquid-like, reminiscent of the subcritical domains. These findings will pave the way to a deeper understanding of hot dense fluids, which are of paramount importance in fundamental and applied sciences.

The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids

Gorelli, F. A.;Santoro, M.;Scopigno, T.
2010

Abstract

According to textbook definitions1, there exists no physical observable able to distinguish a liquid from a gas beyond the critical point, and hence only a single fluid phase is defined. There are, however, some thermophysical quantities, having maxima that define a line emanating from the critical point, named 'the Widom line'2 in the case of the constant-pressure specific heat. We determined the velocity of nanometric acoustic waves in supercritical fluid argon at high pressures by inelastic X-ray scattering and molecular dynamics simulations. Our study reveals a sharp transition on crossing the Widom line demonstrating how the supercritical region is actually divided into two regions that, although not connected by a first-order singularity, can be identified by different dynamical regimes: gas-like and liquid-like, reminiscent of the subcritical domains. These findings will pave the way to a deeper understanding of hot dense fluids, which are of paramount importance in fundamental and applied sciences.
2010
Istituto per i Processi Chimico-Fisici - IPCF
File in questo prodotto:
File Dimensione Formato  
prod_40520-doc_34361.pdf

non disponibili

Descrizione: The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids
Dimensione 553.72 kB
Formato Adobe PDF
553.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 453
  • ???jsp.display-item.citation.isi??? ND
social impact