As transcorneal drug delivery is still a challenge, the scope of the present study was to prepare useful nano-systems able to enhance transcorneal permeation/penetration of drugs. Moreover, this work aims to evaluate the effectiveness of inulin-based nanosystems in the specific field of ocular drug delivery and the effect of PEG chains to promote mucoadhesion, stability and transcorneal penetration/permeation enhancer effect of self-assembling nanoparticles in vitro (transwell systems and HCE) and ex vivo (Franz cells and bovine cornea). In particular, inulin was chosen as the starting natural polysaccharide polymer to design a novel amphiphilic derivative named INU-EDA-RA-PEG capable of self-assembling to form self-assembling nanoparticles and corticosteroids-loaded self-assembling nanoparticles. As observed, self-assembling nanoparticles show appropriate particle size values, mucoadhesivity and cytocompatibility. Moreover, self-assembling nanoparticles are able to act efficiently as permeation/penetration enhancer. Additionally, the presence of PEG has positive influence. Thus, the developed inulin-based nanosystems represent a promising tool to improve transcorneal delivery of corticosteroids.

Mucoadhesive PEGylated inulin-based self-assembling nanoparticles: In vitro and ex vivo transcorneal permeation enhancement of corticosteroids

Di Prima G;
2019

Abstract

As transcorneal drug delivery is still a challenge, the scope of the present study was to prepare useful nano-systems able to enhance transcorneal permeation/penetration of drugs. Moreover, this work aims to evaluate the effectiveness of inulin-based nanosystems in the specific field of ocular drug delivery and the effect of PEG chains to promote mucoadhesion, stability and transcorneal penetration/permeation enhancer effect of self-assembling nanoparticles in vitro (transwell systems and HCE) and ex vivo (Franz cells and bovine cornea). In particular, inulin was chosen as the starting natural polysaccharide polymer to design a novel amphiphilic derivative named INU-EDA-RA-PEG capable of self-assembling to form self-assembling nanoparticles and corticosteroids-loaded self-assembling nanoparticles. As observed, self-assembling nanoparticles show appropriate particle size values, mucoadhesivity and cytocompatibility. Moreover, self-assembling nanoparticles are able to act efficiently as permeation/penetration enhancer. Additionally, the presence of PEG has positive influence. Thus, the developed inulin-based nanosystems represent a promising tool to improve transcorneal delivery of corticosteroids.
2019
Istituto di Biofisica - IBF
Inulin
Self-assembling nanoparticles
Transcorneal delivery
Retinoic acid
Polyethylene glycol
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/390275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact