One of the hallmarks of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconductors is the universal jump of the superfluid density that can be indirectly probed via the nonlinear exponent of the current-voltage I-V characteristics. Here, we compare the experimental measurements of I-V characteristics in two cases, namely NbN thin films and SrTiO3-based interfaces. While the former display a paradigmatic example of BKT-like nonlinear effects, the latter do not seem to justify a BKT analysis. Rather, the observed I-V characteristics can be well reproduced theoretically by modeling the effect of mesoscopic inhomogeneity of the superconducting state. Our results offer an alternative perspective on the spontaneous fragmentation of the superconducting background in confined two-dimensional systems.
Nonlinear I-V characteristics of two-dimensional superconductors: Berezinskii-Kosterlitz-Thouless physics versus inhomogeneity
Venditti, G.;Caprara, S.;Benfatto, L.
2019
Abstract
One of the hallmarks of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconductors is the universal jump of the superfluid density that can be indirectly probed via the nonlinear exponent of the current-voltage I-V characteristics. Here, we compare the experimental measurements of I-V characteristics in two cases, namely NbN thin films and SrTiO3-based interfaces. While the former display a paradigmatic example of BKT-like nonlinear effects, the latter do not seem to justify a BKT analysis. Rather, the observed I-V characteristics can be well reproduced theoretically by modeling the effect of mesoscopic inhomogeneity of the superconducting state. Our results offer an alternative perspective on the spontaneous fragmentation of the superconducting background in confined two-dimensional systems.File | Dimensione | Formato | |
---|---|---|---|
prod_406150-doc_142004.pdf
solo utenti autorizzati
Descrizione: Nonlinear I-V characteristics of two-dimensional superconductors: Berezinskii-Kosterlitz-Thouless physics versus inhomogeneity
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.