We implement an independent component analysis (ICA) algorithm to separate signals of different origin in sky maps at several frequencies. Owing to its self-organizing capability, it works without pior assumptions on either the frequency dependence or the angualar power spectrum of the various signals; rather, it learns directly from the input data how to identify the statistically independent components, on the assumption that all but, at most, one of the components have non-Guassian distributions.

Neural networks and the separation of cosmic microwave background and astrophysical signals in sky maps

Salerno E;Tonazzini A
2000

Abstract

We implement an independent component analysis (ICA) algorithm to separate signals of different origin in sky maps at several frequencies. Owing to its self-organizing capability, it works without pior assumptions on either the frequency dependence or the angualar power spectrum of the various signals; rather, it learns directly from the input data how to identify the statistically independent components, on the assumption that all but, at most, one of the components have non-Guassian distributions.
2000
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Methods : numerical
Techniques : image processing
Cosmic microwave background
Radio continuum : general
Models of computation. Self-modifying machines (e.g.
neural networks)
File in questo prodotto:
File Dimensione Formato  
prod_406216-doc_142044.pdf

solo utenti autorizzati

Descrizione: Neural networks and the separation of cosmic microwave background and astrophysical signals in sky maps
Tipologia: Versione Editoriale (PDF)
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/390808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 79
social impact