This paper introduces technical solutions devised to support the Deployment Site - Regione Emilia Romagna (DS-RER) of the ACTIVAGE project. The ACTIVAGE project aims at promoting IoT (Internet of Things)-based solutions for Active and Healthy ageing. DS-RER focuses on improving continuity of care for older adults (65+) suffering from aftereffects of a stroke event. A Wireless Sensor Kit based on Wi-Fi connectivity was suitably engineered and realized to monitor behavioral aspects, possibly relevant to health and wellbeing assessment. This includes bed/rests patterns, toilet usage, room presence and many others. Besides hardware design and validation, cloud-based analytics services are introduced, suitable for automatic extraction of relevant information (trends and anomalies) from raw sensor data streams. The approach is general and applicable to a wider range of use cases; however, for readability's sake, two simple cases are analyzed, related to bed and toilet usage patterns. In particular, a regression framework is introduced, suitable for detecting trends (long and short-term) and labeling anomalies. A methodology for assessing multi-modal daily behavioral profiles is introduced, based on unsupervised clustering techniques. The proposed framework has been successfully deployed at several real-users' homes, allowing for its functional validation. Clinical effectiveness will be assessed instead through a Randomized Control Trial study, currently being carried out.

IoT-Based Home Monitoring: Supporting Practitioners' Assessment by Behavioral Analysis

Russo D;Barsocchi P;
2019

Abstract

This paper introduces technical solutions devised to support the Deployment Site - Regione Emilia Romagna (DS-RER) of the ACTIVAGE project. The ACTIVAGE project aims at promoting IoT (Internet of Things)-based solutions for Active and Healthy ageing. DS-RER focuses on improving continuity of care for older adults (65+) suffering from aftereffects of a stroke event. A Wireless Sensor Kit based on Wi-Fi connectivity was suitably engineered and realized to monitor behavioral aspects, possibly relevant to health and wellbeing assessment. This includes bed/rests patterns, toilet usage, room presence and many others. Besides hardware design and validation, cloud-based analytics services are introduced, suitable for automatic extraction of relevant information (trends and anomalies) from raw sensor data streams. The approach is general and applicable to a wider range of use cases; however, for readability's sake, two simple cases are analyzed, related to bed and toilet usage patterns. In particular, a regression framework is introduced, suitable for detecting trends (long and short-term) and labeling anomalies. A methodology for assessing multi-modal daily behavioral profiles is introduced, based on unsupervised clustering techniques. The proposed framework has been successfully deployed at several real-users' homes, allowing for its functional validation. Clinical effectiveness will be assessed instead through a Randomized Control Trial study, currently being carried out.
2019
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
IoT
smart home
behavioural analysis
active assisted living (AAL)
anomaly detection
continuous monitoring
File in questo prodotto:
File Dimensione Formato  
prod_405018-doc_141448.pdf

accesso aperto

Descrizione: sensors-19-03238
Tipologia: Versione Editoriale (PDF)
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/391045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 16
social impact