Terahertz (THz) and sub-terahertz (sub-THz) band detection has a key role in both fundamental interactions physics and technological applications, such as medical imaging, industrial quality control, and homeland security. In particular, transition edge sensors (TESs) and kinetic inductance detectors (KIDs) are the most employed bolometers and calorimeters in the THz and sub-THz band for astrophysics and astroparticles research. Here, we present the electronic, thermal, and spectral characterization of an aluminum/copper bilayer sensing structure that, thanks to its thermal properties and a simple miniaturized design, could be considered a perfect candidate to realize an extremely sensitive class of nanoscale TES (nano-TES) for the giga-terahertz band. Indeed, thanks to the reduced dimensionality of the active region and the efficient Andreev mirror heat confinement, our devices are predicted to reach state-of-the-art TES performance. In particular, as a bolometer the nano-TES is expected to have a noise equivalent power of
Development of highly sensitive nanoscale transition edge sensors for gigahertz astronomy and dark matter search
Barone, C.;Castellano, G.;Chiarello, F.;Falferi, P.;Giazotto, F.;Lamanna, G.;Ligato, N;Ligi, C.;Mattioli, F.;Paolucci, F.;Toncelli, A.;Torrioli, G.
2020
Abstract
Terahertz (THz) and sub-terahertz (sub-THz) band detection has a key role in both fundamental interactions physics and technological applications, such as medical imaging, industrial quality control, and homeland security. In particular, transition edge sensors (TESs) and kinetic inductance detectors (KIDs) are the most employed bolometers and calorimeters in the THz and sub-THz band for astrophysics and astroparticles research. Here, we present the electronic, thermal, and spectral characterization of an aluminum/copper bilayer sensing structure that, thanks to its thermal properties and a simple miniaturized design, could be considered a perfect candidate to realize an extremely sensitive class of nanoscale TES (nano-TES) for the giga-terahertz band. Indeed, thanks to the reduced dimensionality of the active region and the efficient Andreev mirror heat confinement, our devices are predicted to reach state-of-the-art TES performance. In particular, as a bolometer the nano-TES is expected to have a noise equivalent power ofFile | Dimensione | Formato | |
---|---|---|---|
Alesini_2020_J._Phys.__Conf._Ser._1559_012020.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.