Single-photon detectors and bolometers represent the bridge between different topics in science, such as quantum computation, astronomy, particle physics, and biology. Nowadays, superconducting bolometers and calorimeters are the most-sensitive detectors in the terahertz and subterahertz bands. Here, we propose and demonstrate a Josephson escape sensor (JES) that could find natural application in astrophysics. The JES is composed of a fully superconducting one-dimensional Josephson junction, whose resistance-versus-temperature characteristics can be precisely controlled by a bias current. Therefore, differently from traditional superconducting detectors, the JES sensitivity and working temperature can be in situ simply and finely tuned depending on the application requirements. A JES bolometer is expected to show an intrinsic thermal-fluctuation-noise noise-equivalent power on the order of 10(-25) W/Hz(1/2), while a JES calorimeter could provide a frequency resolution of about 2 GHz, as deduced from the experimental data. In addition, the sensor can operate at the critical temperature (i.e., working as a conventional transition-edge sensor), with a noise-equivalent power of approximately 6 x 10(-20) W/Hz(1/2) and a frequency resolution of approximately 100 GHz.

Hypersensitive Tunable Josephson Escape Sensor for Gigahertz Astronomy

Paolucci Federico;Ligato Nadia;Giazotto Francesco
2020

Abstract

Single-photon detectors and bolometers represent the bridge between different topics in science, such as quantum computation, astronomy, particle physics, and biology. Nowadays, superconducting bolometers and calorimeters are the most-sensitive detectors in the terahertz and subterahertz bands. Here, we propose and demonstrate a Josephson escape sensor (JES) that could find natural application in astrophysics. The JES is composed of a fully superconducting one-dimensional Josephson junction, whose resistance-versus-temperature characteristics can be precisely controlled by a bias current. Therefore, differently from traditional superconducting detectors, the JES sensitivity and working temperature can be in situ simply and finely tuned depending on the application requirements. A JES bolometer is expected to show an intrinsic thermal-fluctuation-noise noise-equivalent power on the order of 10(-25) W/Hz(1/2), while a JES calorimeter could provide a frequency resolution of about 2 GHz, as deduced from the experimental data. In addition, the sensor can operate at the critical temperature (i.e., working as a conventional transition-edge sensor), with a noise-equivalent power of approximately 6 x 10(-20) W/Hz(1/2) and a frequency resolution of approximately 100 GHz.
2020
Istituto Nanoscienze - NANO
Ghz sensors
bolometer
calorimeter
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/391515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact