Microsystems and biomolecules integration as well multiplexing determinations are key aspects of sensing devices in the field of heavy metal contamination monitoring. The present review collects the most relevant information about optical biosensors development in the last decade. Focus is put on analytical characteristics and applications that are dependent on: (i) Signal transduction method (luminescence, colorimetry, evanescent wave (EW), surface-enhanced Raman spectroscopy (SERS), Förster resonance energy transfer (FRET), surface plasmon resonance (SPR)); (ii) biorecognition molecules employed (proteins, nucleic acids, aptamers, and enzymes). The biosensing systems applied (or applicable) to water and milk samples will be considered for a comparative analysis, with an emphasis on water as the primary source of possible contamination along the food chain.
Bio-Recognition in Spectroscopy-Based Biosensors for *Heavy Metals-Water and Waterborne Contamination Analysis
Aloisi A;Della Torre A;
2019
Abstract
Microsystems and biomolecules integration as well multiplexing determinations are key aspects of sensing devices in the field of heavy metal contamination monitoring. The present review collects the most relevant information about optical biosensors development in the last decade. Focus is put on analytical characteristics and applications that are dependent on: (i) Signal transduction method (luminescence, colorimetry, evanescent wave (EW), surface-enhanced Raman spectroscopy (SERS), Förster resonance energy transfer (FRET), surface plasmon resonance (SPR)); (ii) biorecognition molecules employed (proteins, nucleic acids, aptamers, and enzymes). The biosensing systems applied (or applicable) to water and milk samples will be considered for a comparative analysis, with an emphasis on water as the primary source of possible contamination along the food chain.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.