The worldwide-cultivated chicory (Cichorium intybus L.) produces food and beneficial compounds, and young pre-flowering inflorescence stems are newly marketed vegetables. These sink-organs undergo growth by metabolizing sugars of leaf origin; the carbohydrate content and sweetness are crucial aspects for consumers' nutrition and acceptance. NMR profiling of 31 hydrosoluble phytochemicals showed that stem contents varied as influenced by genotype, environment and interaction, and that higher sucrose levels were associated with the sweeter of two landraces. Integrative analyses of metabolic and transcriptomic profile variations allowed the dissection of sucrose pathway. Overall, 427 and 23 unigenes respectively fell into the categories of sucrose metabolism and sugar carriers. Among 10 differentially expressed genes, the 11474/sucrose synthase, 53458/fructokinase, 9306 and 17035/hexokinases, and 20171/SWEET-type genes significantly associated to sugar content variation, and deduced proteins were characterised in silico. Correlation analyses encompassing sugar level variation, expressions of the former genes and of computationally assigned transcription factors (10938/NAC, 14712/bHLH, 40133/TALE and 17846/MIKC) revealed a gene network. The latter was minimally affected by the environment and accomplished with markers, representing a resource for biological studies and breeding.

Insights into sucrose pathway of chicory stems by integrative transcriptomic and metabolic analyses

Giulio Testone;Anatoly Sobolev;Maria Gonnella;Massimiliano Renna;Luisa Mannina;Donatella Capitani;Donato Giannino
2019

Abstract

The worldwide-cultivated chicory (Cichorium intybus L.) produces food and beneficial compounds, and young pre-flowering inflorescence stems are newly marketed vegetables. These sink-organs undergo growth by metabolizing sugars of leaf origin; the carbohydrate content and sweetness are crucial aspects for consumers' nutrition and acceptance. NMR profiling of 31 hydrosoluble phytochemicals showed that stem contents varied as influenced by genotype, environment and interaction, and that higher sucrose levels were associated with the sweeter of two landraces. Integrative analyses of metabolic and transcriptomic profile variations allowed the dissection of sucrose pathway. Overall, 427 and 23 unigenes respectively fell into the categories of sucrose metabolism and sugar carriers. Among 10 differentially expressed genes, the 11474/sucrose synthase, 53458/fructokinase, 9306 and 17035/hexokinases, and 20171/SWEET-type genes significantly associated to sugar content variation, and deduced proteins were characterised in silico. Correlation analyses encompassing sugar level variation, expressions of the former genes and of computationally assigned transcription factors (10938/NAC, 14712/bHLH, 40133/TALE and 17846/MIKC) revealed a gene network. The latter was minimally affected by the environment and accomplished with markers, representing a resource for biological studies and breeding.
2019
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Istituto per i Sistemi Biologici - ISB (ex IMC)
Istituto di Scienze delle Produzioni Alimentari - ISPA
Cichorium intybus
Compositae
Stem sugar metabolism
NMR profiling
RNA-Seq
Sucrose catabolism genes
Gene network
File in questo prodotto:
File Dimensione Formato  
prod_405631-doc_165753.pdf

solo utenti autorizzati

Descrizione: Insights into sucrose pathway of chicory stems - Phytochem2019.pdf
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/391784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact