A highly sustainable prototype of a flow system based on gold nanoparticles (4.2 nm) supported on thiol-functionalized halloysite nanotubes (HNTs) was developed for catalytic applications. The catalytic performances were evaluated using the reduction of 4-nitrophenol to 4-aminophenol as a model system. Under the best experimental conditions (0.0001 mol%, 1.97 x 10(-8) mg of Au nanoparticles), an impressive apparent turnover frequency value up to 2 204 530 h(-1) was achieved and the halloysite-based catalyst showed full recyclability even after ten cycles. The high catalytic activity confirms the importance of the use of HNTs as support for Au nanoparticles that can exert a synergistic effect both as medium for transfer of electrons from borohydride ions to 4-nitrophenol and by modulating interfacial electron transfer dynamics. With the application of flow technology, the obtained heterogeneous HNT@Au catalyst was fully recovered and reused for at least one month.

Gold nanoparticles stabilized by modified halloysite nanotubes for catalytic applications

La Parola Valeria;
2019

Abstract

A highly sustainable prototype of a flow system based on gold nanoparticles (4.2 nm) supported on thiol-functionalized halloysite nanotubes (HNTs) was developed for catalytic applications. The catalytic performances were evaluated using the reduction of 4-nitrophenol to 4-aminophenol as a model system. Under the best experimental conditions (0.0001 mol%, 1.97 x 10(-8) mg of Au nanoparticles), an impressive apparent turnover frequency value up to 2 204 530 h(-1) was achieved and the halloysite-based catalyst showed full recyclability even after ten cycles. The high catalytic activity confirms the importance of the use of HNTs as support for Au nanoparticles that can exert a synergistic effect both as medium for transfer of electrons from borohydride ions to 4-nitrophenol and by modulating interfacial electron transfer dynamics. With the application of flow technology, the obtained heterogeneous HNT@Au catalyst was fully recovered and reused for at least one month.
2019
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
flow technology
gold nanoparticles
halloysite nanotubes
reduction reactions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/391870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact