Photon statistical measurements on a semiconductor microlaser, obtained using single-photon counting techniques, show that a newly discovered spontaneous pulsed emission regime possesses superthermal statistical properties. The observed spike dynamics, typical of small-scale devices, is at the origin of an unexpected discordance between the probability density function and its representation in terms of the first moments, a discordance so far unnoticed in all devices. The impact of this new dynamics is potentially large, since coincidence techniques are presently the sole techniques capable of characterizing light emitted by nanolasers.
Superthermal-light emission and nontrivial photon statistics in small lasers
Puccioni GP;
2020
Abstract
Photon statistical measurements on a semiconductor microlaser, obtained using single-photon counting techniques, show that a newly discovered spontaneous pulsed emission regime possesses superthermal statistical properties. The observed spike dynamics, typical of small-scale devices, is at the origin of an unexpected discordance between the probability density function and its representation in terms of the first moments, a discordance so far unnoticed in all devices. The impact of this new dynamics is potentially large, since coincidence techniques are presently the sole techniques capable of characterizing light emitted by nanolasers.File | Dimensione | Formato | |
---|---|---|---|
prod_432755-doc_162225.pdf
solo utenti autorizzati
Descrizione: Superthermal-light emission and nontrivial photon statistics in small lasers
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.