Recently, studies on the characterization and detection of social bots were published at an impressive rate. By looking back at over ten years of research and experimentation on social bots detection, in this paper we aim at understanding past, present, and future research trends in this crucial field. In doing so, we discuss about one of the nastiest features of social bots - that is, their evolutionary nature. Then, we highlight the switch from supervised bot detection techniques - focusing on feature engineering and on the analysis of one account at a time - to unsupervised ones, where the focus is on proposing new detection algorithms and on the analysis of groups of accounts that behave in a coordinated and synchronized fashion. These unsupervised, group-analyses techniques currently represent the state-of-the-art in social bot detection. Going forward, we analyze the latest research trend in social bot detection in order to highlight a promising new development of this crucial field.

Detecting Malicious Social Bots: Story of a Never-Ending Clash

S Cresci
2019

Abstract

Recently, studies on the characterization and detection of social bots were published at an impressive rate. By looking back at over ten years of research and experimentation on social bots detection, in this paper we aim at understanding past, present, and future research trends in this crucial field. In doing so, we discuss about one of the nastiest features of social bots - that is, their evolutionary nature. Then, we highlight the switch from supervised bot detection techniques - focusing on feature engineering and on the analysis of one account at a time - to unsupervised ones, where the focus is on proposing new detection algorithms and on the analysis of groups of accounts that behave in a coordinated and synchronized fashion. These unsupervised, group-analyses techniques currently represent the state-of-the-art in social bot detection. Going forward, we analyze the latest research trend in social bot detection in order to highlight a promising new development of this crucial field.
2019
Istituto di informatica e telematica - IIT
online social networks security social media analysis and mining Social spambots
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/392175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact