Planning adequate audit strategies is a key success factor in "a posteriori" fraud detection, e.g., in the fiscal and insurance domains, where audits are intended to detect tax evasion and fraudulent claims. A case study is presented in this paper, which illustrates how techniques based on classification can be used to support the task of planning audit strategies. The proposed approach is sensible to some conflicting issues of audit planning, e.g., the trade-off between maximizing audit benefits vs. minimizing audit costs.

Using data mining techniques in fiscal fraud detection

Bonchi F;Giannotti F;Mainetto G;Pedreschi D
1999

Abstract

Planning adequate audit strategies is a key success factor in "a posteriori" fraud detection, e.g., in the fiscal and insurance domains, where audits are intended to detect tax evasion and fraudulent claims. A case study is presented in this paper, which illustrates how techniques based on classification can be used to support the task of planning audit strategies. The proposed approach is sensible to some conflicting issues of audit planning, e.g., the trade-off between maximizing audit benefits vs. minimizing audit costs.
1999
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Data mining
Database applications. Data mining
File in questo prodotto:
File Dimensione Formato  
prod_408110-doc_143128.pdf

solo utenti autorizzati

Descrizione: Using data mining techniques in fiscal fraud detection
Tipologia: Versione Editoriale (PDF)
Dimensione 200.83 kB
Formato Adobe PDF
200.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/392375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact