The ability to tune and enhance the properties of luminescent materials is essential for enlarging their application potential. Recently, the modulation of the photoluminescence emission of lanthanide-doped ferroelectric perovskites by applying an electric field has been reported. Herein, we show that the ferroelectric order and, more generally the polar order, has a direct effect on the photoluminescence of Eu3+ in the model BaZrxTi1-xO3 perovskite even in the absence of an external field. The dipole arrangement evolves with increasing x from long-range ferroelectric order to short-range order typical of relaxors until the non-polar paraelectric BaZrO3 is achieved. The cooperative polar interactions existing in the lattice (x < 1) promote the off-center displacement of the Eu3+ ion determining a change of the lanthanide site symmetry and, consequently, an abrupt variation of the photoluminescence emission with temperature. Each type of polar order is characterized by a distinct photoluminescence behaviour.
Ferroelectric order driven Eu3+ photoluminescence in BaZrxTi1-xO3 perovskite
Canu G;Bottaro G;Buscaglia MT;Costa C;Buscaglia V;Armelao L
2019
Abstract
The ability to tune and enhance the properties of luminescent materials is essential for enlarging their application potential. Recently, the modulation of the photoluminescence emission of lanthanide-doped ferroelectric perovskites by applying an electric field has been reported. Herein, we show that the ferroelectric order and, more generally the polar order, has a direct effect on the photoluminescence of Eu3+ in the model BaZrxTi1-xO3 perovskite even in the absence of an external field. The dipole arrangement evolves with increasing x from long-range ferroelectric order to short-range order typical of relaxors until the non-polar paraelectric BaZrO3 is achieved. The cooperative polar interactions existing in the lattice (x < 1) promote the off-center displacement of the Eu3+ ion determining a change of the lanthanide site symmetry and, consequently, an abrupt variation of the photoluminescence emission with temperature. Each type of polar order is characterized by a distinct photoluminescence behaviour.File | Dimensione | Formato | |
---|---|---|---|
prod_402323-doc_140014.pdf
accesso aperto
Descrizione: Ferroelectric order driven eu3+....
Tipologia:
Versione Editoriale (PDF)
Dimensione
4.41 MB
Formato
Adobe PDF
|
4.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.