The protocol, based on quantitative line-shape analysis of C 1s signals, uses asymmetric pseudo-Voigt line-shapes (APV), in contrast to Gaussian-based approaches conventionally used in fitting XPS spectra, thus allowing better accuracy in quantifying C 1s contributions from graphitic carbon (sp2), defects (sp3 carbon), carbons bonded to hydroxyl and epoxy groups, and from carbonyl and carboxyl groups. The APV protocol was evaluated on GRMs with O/C ratios ranging from 0.02 to 0.30 with film thicknesses from monolayers to bulk-like (>30 nm) layers and also applied to previously published data, showing better results compared to those from conventional XPS fitting protocols.
A simple, fast and general protocol for quantitative analysis of X-ray photoelectron spectroscopy (XPS) data provides accurate estimations of chemical species in graphene and related materials (GRMs). XPS data are commonly used to estimate the quality of and defects in graphene and graphene oxide (GO), by comparing carbon and oxygen 1s XPS peaks, obtaining an O/C ratio. This approach, however, cannot be used in the presence of extraneous oxygen contamination.
Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy
Kovtun Alessandro;Jones Derek;Dell'Elce Simone;Treossi Emanuele;Liscio Andrea;Palermo Vincenzo
2019
Abstract
A simple, fast and general protocol for quantitative analysis of X-ray photoelectron spectroscopy (XPS) data provides accurate estimations of chemical species in graphene and related materials (GRMs). XPS data are commonly used to estimate the quality of and defects in graphene and graphene oxide (GO), by comparing carbon and oxygen 1s XPS peaks, obtaining an O/C ratio. This approach, however, cannot be used in the presence of extraneous oxygen contamination.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.