In this paper we describe the system used for the participation to the ABSITA, GxG, HaSpeeDe and IronITA shared tasks of the EVALITA 2018 conference. We developed a classifier that can be configured to use Bidirectional Long Short Term Memories and linear Support Vector Machines as learning algorithms. When using Bi-LSTMs we tested a multitask learning approach which learns the optimized parameters of the network exploiting simultaneously all the annotated dataset labels and a multiclassifier voting approach based on a k-fold technique. In addition, we developed generic and specific word embedding lexicons to further improve classification performances. When evaluated on the official test sets, our system ranked 1st in almost all subtasks for each shared task, showing the effectiveness of our approach.
Multi-task learning in deep neural networks at EVALITA 2018
Cimino A;Dell'Orletta F
2018
Abstract
In this paper we describe the system used for the participation to the ABSITA, GxG, HaSpeeDe and IronITA shared tasks of the EVALITA 2018 conference. We developed a classifier that can be configured to use Bidirectional Long Short Term Memories and linear Support Vector Machines as learning algorithms. When using Bi-LSTMs we tested a multitask learning approach which learns the optimized parameters of the network exploiting simultaneously all the annotated dataset labels and a multiclassifier voting approach based on a k-fold technique. In addition, we developed generic and specific word embedding lexicons to further improve classification performances. When evaluated on the official test sets, our system ranked 1st in almost all subtasks for each shared task, showing the effectiveness of our approach.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.anceserie | CEUR WORKSHOP PROCEEDINGS | - |
| dc.authority.anceserie | CEUR Workshop Proceedings | - |
| dc.authority.people | Cimino A | it |
| dc.authority.people | De Mattei L | it |
| dc.authority.people | Dell'Orletta F | it |
| dc.collection.id.s | 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d | * |
| dc.collection.name | 04.01 Contributo in Atti di convegno | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.date.accessioned | 2024/02/21 02:44:11 | - |
| dc.date.available | 2024/02/21 02:44:11 | - |
| dc.date.issued | 2018 | - |
| dc.description.abstracteng | In this paper we describe the system used for the participation to the ABSITA, GxG, HaSpeeDe and IronITA shared tasks of the EVALITA 2018 conference. We developed a classifier that can be configured to use Bidirectional Long Short Term Memories and linear Support Vector Machines as learning algorithms. When using Bi-LSTMs we tested a multitask learning approach which learns the optimized parameters of the network exploiting simultaneously all the annotated dataset labels and a multiclassifier voting approach based on a k-fold technique. In addition, we developed generic and specific word embedding lexicons to further improve classification performances. When evaluated on the official test sets, our system ranked 1st in almost all subtasks for each shared task, showing the effectiveness of our approach. | - |
| dc.description.affiliations | Istituto di Linguistica Computazionale "Antonio Zampolli" (ILC), CNR, Pisa; Dipartimento di Informatica, Università di Pisa, Italy | - |
| dc.description.allpeople | Cimino A.; De Mattei L.; Dell'Orletta F. | - |
| dc.description.allpeopleoriginal | Cimino A.; De Mattei L.; Dell'Orletta F. | - |
| dc.description.fulltext | none | en |
| dc.description.numberofauthors | 2 | - |
| dc.identifier.scopus | 2-s2.0-85058664441 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/392545 | - |
| dc.identifier.url | http://www.scopus.com/record/display.url?eid=2-s2.0-85058664441&origin=inward | - |
| dc.language.iso | eng | - |
| dc.relation.conferencedate | 12-13/12/2018 | - |
| dc.relation.conferencename | EVALITA '18, Evaluation of NLP and Speech Tools for Italian | - |
| dc.relation.conferenceplace | Torino | - |
| dc.relation.volume | 2263 | - |
| dc.subject.keywords | Multi-task Learning | - |
| dc.subject.keywords | Deep Neural Networks | - |
| dc.subject.singlekeyword | Multi-task Learning | * |
| dc.subject.singlekeyword | Deep Neural Networks | * |
| dc.title | Multi-task learning in deep neural networks at EVALITA 2018 | en |
| dc.type.driver | info:eu-repo/semantics/conferenceObject | - |
| dc.type.full | 04 Contributo in convegno::04.01 Contributo in Atti di convegno | it |
| dc.type.miur | 273 | - |
| dc.type.referee | Sì, ma tipo non specificato | - |
| dc.ugov.descaux1 | 434876 | - |
| iris.orcid.lastModifiedDate | 2024/03/16 09:43:26 | * |
| iris.orcid.lastModifiedMillisecond | 1710578606417 | * |
| iris.scopus.extIssued | 2018 | - |
| iris.scopus.extTitle | Multi-task learning in deep neural networks at EVALITA 2018 | - |
| iris.scopus.metadataErrorDescription | 400 Bad Request: " Document ID is not valid |
- |
| iris.scopus.metadataErrorType | APPLICATION | - |
| iris.scopus.metadataStatus | ERROR | - |
| iris.sitodocente.maxattempts | 1 | - |
| scopus.authority.anceserie | CEUR WORKSHOP PROCEEDINGS###1613-0073 | * |
| scopus.category | 1700 | * |
| scopus.contributor.affiliation | ItaliaNLP Lab | - |
| scopus.contributor.affiliation | Università di Pisa | - |
| scopus.contributor.affiliation | ItaliaNLP Lab | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.afid | 60028868 | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.auid | 57002803800 | - |
| scopus.contributor.auid | 57204921228 | - |
| scopus.contributor.auid | 57540567000 | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.dptid | 114087935 | - |
| scopus.contributor.dptid | 109696702 | - |
| scopus.contributor.dptid | 114087935 | - |
| scopus.contributor.name | Andrea | - |
| scopus.contributor.name | Lorenzo | - |
| scopus.contributor.name | Felice | - |
| scopus.contributor.subaffiliation | Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC–CNR); | - |
| scopus.contributor.subaffiliation | Dipartimento di Informatica; | - |
| scopus.contributor.subaffiliation | Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC–CNR); | - |
| scopus.contributor.surname | Cimino | - |
| scopus.contributor.surname | De Mattei | - |
| scopus.contributor.surname | Dell’Orletta | - |
| scopus.date.issued | 2018 | * |
| scopus.description.abstract | In this paper we describe the system used for the participation to the ABSITA, GxG, HaSpeeDe and IronITA shared tasks of the EVALITA 2018 conference. We developed a classifier that can be configured to use Bidirectional Long Short Term Memories and linear Support Vector Machines as learning algorithms. When using Bi-LSTMs we tested a multitask learning approach which learns the optimized parameters of the network exploiting simultaneously all the annotated dataset labels and a multiclassifier voting approach based on a k-fold technique. In addition, we developed generic and specific word embedding lexicons to further improve classification performances. When evaluated on the official test sets, our system ranked 1st in almost all subtasks for each shared task, showing the effectiveness of our approach. | * |
| scopus.description.allpeopleoriginal | Cimino A.; De Mattei L.; Dell'Orletta F. | * |
| scopus.differences | scopus.relation.conferencename | * |
| scopus.differences | scopus.authority.anceserie | * |
| scopus.differences | scopus.publisher.name | * |
| scopus.differences | scopus.relation.conferencedate | * |
| scopus.differences | scopus.relation.conferenceplace | * |
| scopus.document.type | cp | * |
| scopus.document.types | cp | * |
| scopus.funding.funders | 100007065 - Nvidia; | * |
| scopus.identifier.pui | 625516033 | * |
| scopus.identifier.scopus | 2-s2.0-85058664441 | * |
| scopus.journal.sourceid | 21100218356 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | CEUR-WS | * |
| scopus.relation.conferencedate | 2018 | * |
| scopus.relation.conferencename | 6th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop, EVALITA 2018 | * |
| scopus.relation.conferenceplace | ita | * |
| scopus.relation.volume | 2263 | * |
| scopus.title | Multi-task learning in deep neural networks at EVALITA 2018 | * |
| scopus.titleeng | Multi-task learning in deep neural networks at EVALITA 2018 | * |
| Appare nelle tipologie: | 04.01 Contributo in Atti di convegno | |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


