In the late years sentiment analysis and its applications have reached growing popularity. Concerning this field of research, in the very late years machine learning and word representation learning derived from distributional semantics field (i.e. word embeddings) have proven to be very successful in performing sentiment analysis tasks. In this paper we describe a set of experiments, with the aim of evaluating the impact of word embedding-based features in sentiment analysis tasks.

Word embeddings in sentiment analysis

Dell'Orletta F
2018

Abstract

In the late years sentiment analysis and its applications have reached growing popularity. Concerning this field of research, in the very late years machine learning and word representation learning derived from distributional semantics field (i.e. word embeddings) have proven to be very successful in performing sentiment analysis tasks. In this paper we describe a set of experiments, with the aim of evaluating the impact of word embedding-based features in sentiment analysis tasks.
Campo DC Valore Lingua
dc.authority.anceserie CEUR WORKSHOP PROCEEDINGS -
dc.authority.anceserie CEUR Workshop Proceedings -
dc.authority.people Petrolito R it
dc.authority.people Dell'Orletta F it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/21 02:44:59 -
dc.date.available 2024/02/21 02:44:59 -
dc.date.issued 2018 -
dc.description.abstracteng In the late years sentiment analysis and its applications have reached growing popularity. Concerning this field of research, in the very late years machine learning and word representation learning derived from distributional semantics field (i.e. word embeddings) have proven to be very successful in performing sentiment analysis tasks. In this paper we describe a set of experiments, with the aim of evaluating the impact of word embedding-based features in sentiment analysis tasks. -
dc.description.affiliations Università di Pisa, , Italy; Istituto di Linguistica Computazionale Antonio Zampolli (ILC-CNR), ItaliaNLP Lab., , Italy -
dc.description.allpeople Petrolito R.; Dell'Orletta F. -
dc.description.allpeopleoriginal Petrolito R.; Dell'Orletta F. -
dc.description.fulltext none en
dc.description.numberofauthors 1 -
dc.identifier.doi 10.4000/books.aaccademia.3589 -
dc.identifier.scopus 2-s2.0-85057752928 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/392548 -
dc.identifier.url http://www.scopus.com/record/display.url?eid=2-s2.0-85057752928&origin=inward -
dc.language.iso eng -
dc.relation.conferencedate 10-12/12/2018 -
dc.relation.conferencename 5th Italian Conference on Computational Linguistics (CLiC-it) -
dc.relation.conferenceplace Torino -
dc.relation.volume 2253 -
dc.subject.keywords Word Embeddings -
dc.subject.keywords Sentiment Analysis -
dc.subject.singlekeyword Word Embeddings *
dc.subject.singlekeyword Sentiment Analysis *
dc.title Word embeddings in sentiment analysis en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 434879 -
iris.orcid.lastModifiedDate 2024/03/01 13:36:03 *
iris.orcid.lastModifiedMillisecond 1709296563792 *
iris.scopus.extIssued 2018 -
iris.scopus.extTitle Word embeddings in sentiment analysis -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.doi 10.4000/books.aaccademia.3589 *
iris.unpaywall.isoa false *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.metadataCallLastModified 13/12/2025 03:39:24 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1765593564456 -
iris.unpaywall.oastatus closed *
scopus.authority.anceserie CEUR WORKSHOP PROCEEDINGS###1613-0073 *
scopus.category 1700 *
scopus.contributor.affiliation Università di Pisa -
scopus.contributor.affiliation ItaliaNLP Lab. -
scopus.contributor.afid 60028868 -
scopus.contributor.afid 60008941 -
scopus.contributor.auid 57204898135 -
scopus.contributor.auid 57540567000 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid 114087935 -
scopus.contributor.name Ruggero -
scopus.contributor.name Felice -
scopus.contributor.subaffiliation -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale Antonio Zampolli (ILC-CNR); -
scopus.contributor.surname Petrolito -
scopus.contributor.surname Dell'Orletta -
scopus.date.issued 2018 *
scopus.description.abstracteng In the late years sentiment analysis and its applications have reached growing popularity. Concerning this field of research, in the very late years machine learning and word representation learning derived from distributional semantics field (i.e. word embeddings) have proven to be very successful in performing sentiment analysis tasks. In this paper we describe a set of experiments, with the aim of evaluating the impact of word embedding-based features in sentiment analysis tasks. *
scopus.description.allpeopleoriginal Petrolito R.; Dell'Orletta F. *
scopus.differences scopus.relation.conferencename *
scopus.differences scopus.authority.anceserie *
scopus.differences scopus.publisher.name *
scopus.differences scopus.relation.conferencedate *
scopus.differences scopus.relation.conferenceplace *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.doi 10.4000/books.aaccademia.3589 *
scopus.identifier.pui 625360148 *
scopus.identifier.scopus 2-s2.0-85057752928 *
scopus.journal.sourceid 21100218356 *
scopus.language.iso eng *
scopus.publisher.name CEUR-WS *
scopus.relation.conferencedate 2018 *
scopus.relation.conferencename 5th Italian Conference on Computational Linguistics, CLiC-it 2018 *
scopus.relation.conferenceplace ita *
scopus.relation.volume 2253 *
scopus.title Word embeddings in sentiment analysis *
scopus.titleeng Word embeddings in sentiment analysis *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/392548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact