The current development trend of wireless communications aims at coping with the very stringent reliability and latency requirements posed by several emerging Internet-of-Things (IoT) application scenarios. Since the problem of realizing ultrareliable low-latency communications (URLLCs) is becoming more and more important, it has attracted the attention of researchers, and new efficient resource allocation algorithms are necessary. In this article, we consider a challenging scenario where the available spectrum might be fragmented across nonadjacent portions of the band, and channels are differently affected by interference coming from surrounding networks. Furthermore, channel state information (CSI) is assumed to be unavailable, thus requiring an allocation of resources-based only on topology information and channel statistics. To address this challenge in a dense smart factory scenario, where devices periodically transmit their data to a common receiver, we present a novel resource allocation methodology based on a graph-theoretical approach originally designed to allocate mobility resources in on-demand, shared transportation. The proposed methodology is compared with two benchmark allocation strategies, showing its ability of increasing spectral efficiency of as much as 50% with respect to the best performing benchmark. Contrary to what happens in many resource allocation settings, this increase in spectrum efficiency does not come at the expense of fairness, which is also increased as compared to benchmark algorithms.

Resource Allocation and Sharing in URLLC for IoT Applications using Shareability Graphs

F Librino
Primo
;
P Santi
Ultimo
2020

Abstract

The current development trend of wireless communications aims at coping with the very stringent reliability and latency requirements posed by several emerging Internet-of-Things (IoT) application scenarios. Since the problem of realizing ultrareliable low-latency communications (URLLCs) is becoming more and more important, it has attracted the attention of researchers, and new efficient resource allocation algorithms are necessary. In this article, we consider a challenging scenario where the available spectrum might be fragmented across nonadjacent portions of the band, and channels are differently affected by interference coming from surrounding networks. Furthermore, channel state information (CSI) is assumed to be unavailable, thus requiring an allocation of resources-based only on topology information and channel statistics. To address this challenge in a dense smart factory scenario, where devices periodically transmit their data to a common receiver, we present a novel resource allocation methodology based on a graph-theoretical approach originally designed to allocate mobility resources in on-demand, shared transportation. The proposed methodology is compared with two benchmark allocation strategies, showing its ability of increasing spectral efficiency of as much as 50% with respect to the best performing benchmark. Contrary to what happens in many resource allocation settings, this increase in spectrum efficiency does not come at the expense of fairness, which is also increased as compared to benchmark algorithms.
2020
Istituto di informatica e telematica - IIT
wireless networks
scheduling
ofdm
File in questo prodotto:
File Dimensione Formato  
prod_434982-doc_155483.pdf

accesso aperto

Descrizione: Resource Allocation and Sharing in URLLC for IoT Applications using Shareability Graphs
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 386.06 kB
Formato Adobe PDF
386.06 kB Adobe PDF Visualizza/Apri
IoTJ2020.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Final Version.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 401.38 kB
Formato Adobe PDF
401.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/392651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact