According to previous research, natural polyamines exert a role in regulating cell committment and differentiation from stemness during skeletal development. In order to assess whether distinct polyamine patterns are associated with different skeletal cell types, primary cultures of stem cells, chondrocytes or osteoblasts were dedicated for HPLC analysis of intracellular polyamines. Spermine (SPM) and Spermidine (SPD) levels were higher in adipose derived stem cells (ASC) compared to mature skeletal cells, i.e. chondrocytes and osteoblasts, confirming the connection of polyamine content with stemness. To establish whether polyamines can protect ASC against oxidative DNA damage in a 3-D differentiation model, the level of ?H2AX was measured by western blot, and found to correlate with age and BMI of patients. Addition of either polyamine to ASC was able to hinder DNA damage in the low micromolecular range, with marked reduction of ?H2AX level at 10 µM SPM and 5 µM SPD. Molecular analysis of the mechanisms that might underlie the protective effect of polyamine supplementation evidences a possible involvement of autophagy. Altogether, these results support the idea that polyamines are able to manage both stem cell differentiation and cell oxidative damage, and therefore represent appealing tools for regenerative and cell based applications.

Polyamine supplementation reduces DNA damage in adipose stem cells cultured in 3-D

Santi S;
2019

Abstract

According to previous research, natural polyamines exert a role in regulating cell committment and differentiation from stemness during skeletal development. In order to assess whether distinct polyamine patterns are associated with different skeletal cell types, primary cultures of stem cells, chondrocytes or osteoblasts were dedicated for HPLC analysis of intracellular polyamines. Spermine (SPM) and Spermidine (SPD) levels were higher in adipose derived stem cells (ASC) compared to mature skeletal cells, i.e. chondrocytes and osteoblasts, confirming the connection of polyamine content with stemness. To establish whether polyamines can protect ASC against oxidative DNA damage in a 3-D differentiation model, the level of ?H2AX was measured by western blot, and found to correlate with age and BMI of patients. Addition of either polyamine to ASC was able to hinder DNA damage in the low micromolecular range, with marked reduction of ?H2AX level at 10 µM SPM and 5 µM SPD. Molecular analysis of the mechanisms that might underlie the protective effect of polyamine supplementation evidences a possible involvement of autophagy. Altogether, these results support the idea that polyamines are able to manage both stem cell differentiation and cell oxidative damage, and therefore represent appealing tools for regenerative and cell based applications.
2019
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
Polyamine supplementation
DNA damage
adipose stem cells
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/392690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact