Arguments suggest and recent analysis of experimental work confirm that the current interpretation of the transformation process we call 'radioactive decay' should be revised. The characteristics of this process are better accounted for by re-interpreting it in terms of second-order kinetics. Therefore, the atomic systems of nuclides we observe decay are 'radio-activated', and not, as hitherto believed, 'radio-active'. According to this interpretation, the rate of decay of a radioactive nuclide is at any instant proportional to the concentration of the physical species that determines its activation. The analysis of ? of alfa- and beta-emitting nuclides show the dependence of these parameters from solar activity and distance. Therefore, if changes in the emission of energy from the sun occurred over time since the formation of a geological system, changes in the values of ? of the radioactive nuclides would also have occurred, and the calculated radiometric age of the system may differ from the true age. Implications on the science of dating geological samples using parent-daughter decay systematics are investigated.

Radioactive Decay as A Second-Order Kinetics Transformation Process. Consequences on Radiometric Dating

Cavazzini Giancarlo
2019

Abstract

Arguments suggest and recent analysis of experimental work confirm that the current interpretation of the transformation process we call 'radioactive decay' should be revised. The characteristics of this process are better accounted for by re-interpreting it in terms of second-order kinetics. Therefore, the atomic systems of nuclides we observe decay are 'radio-activated', and not, as hitherto believed, 'radio-active'. According to this interpretation, the rate of decay of a radioactive nuclide is at any instant proportional to the concentration of the physical species that determines its activation. The analysis of ? of alfa- and beta-emitting nuclides show the dependence of these parameters from solar activity and distance. Therefore, if changes in the emission of energy from the sun occurred over time since the formation of a geological system, changes in the values of ? of the radioactive nuclides would also have occurred, and the calculated radiometric age of the system may differ from the true age. Implications on the science of dating geological samples using parent-daughter decay systematics are investigated.
2019
Radioactive decay
Second-order kinetics
Decay constant
Solar activity
Apparent age
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/393076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact