TRAP1 is the mitochondrial paralog of the heat shock protein 90 (HSP90) chaperone family. Its activity as an energy metabolism regulator has important implications in cancer, neurodegeneration, and ischemia. Selective inhibitors of TRAP1 could inform on its mechanisms of action and set the stage for targeted drug development, but their identification was hampered by the similarity among active sites in HSP90 homologs. We use a dynamics-based approach to identify a TRAP1 allosteric pocket distal to its active site that can host drug-like molecules, and we select small molecules with optimal stereochemical features to target the pocket. These leads inhibit TRAP1, but not HSP90, ATPase activity and revert TRAP1-dependent downregulation of succinate dehydrogenase activity in cancer cells and in zebrafish larvae. TRAP1 inhibitors are not toxic per se, but they abolish tumorigenic growth of neoplastic cells. Our results indicate that exploiting conformational dynamics can expand the chemical space of chaperone antagonists to TRAP1-specific inhibitors with wide therapeutic opportunities.

Rational Design of Allosteric and Selective Inhibitors of the Molecular Chaperone TRAP1

Moroni E;Ferraro M;Colombo G
2020

Abstract

TRAP1 is the mitochondrial paralog of the heat shock protein 90 (HSP90) chaperone family. Its activity as an energy metabolism regulator has important implications in cancer, neurodegeneration, and ischemia. Selective inhibitors of TRAP1 could inform on its mechanisms of action and set the stage for targeted drug development, but their identification was hampered by the similarity among active sites in HSP90 homologs. We use a dynamics-based approach to identify a TRAP1 allosteric pocket distal to its active site that can host drug-like molecules, and we select small molecules with optimal stereochemical features to target the pocket. These leads inhibit TRAP1, but not HSP90, ATPase activity and revert TRAP1-dependent downregulation of succinate dehydrogenase activity in cancer cells and in zebrafish larvae. TRAP1 inhibitors are not toxic per se, but they abolish tumorigenic growth of neoplastic cells. Our results indicate that exploiting conformational dynamics can expand the chemical space of chaperone antagonists to TRAP1-specific inhibitors with wide therapeutic opportunities.
2020
Istituto di Neuroscienze - IN -
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
allosteric inhibitors
TRAP1
modelling
computational
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/393116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? ND
social impact