This paper describes the efforts, pitfalls, and successes of applying unsupervised classification techniques to analyze the Trap-2017 dataset. Guided by the informative perspective on the nature of the dataset obtained through a set of specifically-written perl/bash scripts, we devised an automated clustering tool implemented in python upon openly-available scientific libraries. By applying our tool on the original raw data it is possibile to infer a set of trending behaviors for vehicles travelling over a route, yielding an instrument to classify both routes and plates. Our results show that addressing the main goal of the Trap-2017 initiative (``to identify itineraries that could imply a criminal intent'') is feasible even in the presence of an unlabelled and noisy dataset, provided that the unique characteristics of the problem are carefully considered. Albeit several optimizations for the tool are still under investigation, we believe that it may already pave the way to further research on the extraction of high-level travelling behaviors from gates transit records.

Unsupervised Classification of Routes and Plates from the Trap-2017 Dataset

Bernaschi;Massimo;Celestini;Alessandro;Guarino;Stefano;Lombardi;Flavio;Mastrostefano;Enrico
2018

Abstract

This paper describes the efforts, pitfalls, and successes of applying unsupervised classification techniques to analyze the Trap-2017 dataset. Guided by the informative perspective on the nature of the dataset obtained through a set of specifically-written perl/bash scripts, we devised an automated clustering tool implemented in python upon openly-available scientific libraries. By applying our tool on the original raw data it is possibile to infer a set of trending behaviors for vehicles travelling over a route, yielding an instrument to classify both routes and plates. Our results show that addressing the main goal of the Trap-2017 initiative (``to identify itineraries that could imply a criminal intent'') is feasible even in the presence of an unlabelled and noisy dataset, provided that the unique characteristics of the problem are carefully considered. Albeit several optimizations for the tool are still under investigation, we believe that it may already pave the way to further research on the extraction of high-level travelling behaviors from gates transit records.
2018
Istituto Applicazioni del Calcolo ''Mauro Picone''
978-3-319-75608-0
Traffic Data
Clustering
Unsupervised Classification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/393370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact