The hydrodeoxygenation of raw bio-oil was investigated in a continuous fixed bed reactor over a series of FeMoP/zeolite catalysts, pursuing a maximized and stable production of phenolics and aromatics. After 5 h of reaction, the catalysts reach a pseudosteady activity state. The FeMoP/HZSM-5 catalyst yields the highest amount of carbon products (53.5 wt%) with the highest selectivity towards aromatics (13.6 wt%, dry basis) and phenolics (12.2 wt%), due to the synergy between the weak acidity of the FeMoP and the mild acidity of the HZSM-5 zeolite, which minimizes dehydration and gasification. The MFI framework allows the sweeping of coke precursors.
Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts
Bonura G;Cannilla C;Frusteri F;
2019
Abstract
The hydrodeoxygenation of raw bio-oil was investigated in a continuous fixed bed reactor over a series of FeMoP/zeolite catalysts, pursuing a maximized and stable production of phenolics and aromatics. After 5 h of reaction, the catalysts reach a pseudosteady activity state. The FeMoP/HZSM-5 catalyst yields the highest amount of carbon products (53.5 wt%) with the highest selectivity towards aromatics (13.6 wt%, dry basis) and phenolics (12.2 wt%), due to the synergy between the weak acidity of the FeMoP and the mild acidity of the HZSM-5 zeolite, which minimizes dehydration and gasification. The MFI framework allows the sweeping of coke precursors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


