A significant boost to the catalytic technology of CO-to-DME hydrogenation in a single step was recently given by the design of novel hybrid multimetallic/zeolite systems. However, a significant drop of catalyst activity after few hours of operation time pushes now the research interest towards the development of more stable multifunctional systems, suitable to ensure activity, selectivity and lifetime under typical industrial conditions. In this work, the influence of different home-made zeolite samples (i.e., Sil-1, MFI, Y, FER, BEA, MOR), integrated in a weight ratio of 1:1 with a CuO-ZnO-ZrO metal-oxide(s) phase, was investigated under long-term stability tests in a fixed bed reactor during CO hydrogenation reaction to assess the activity-selectivity pattern of the hybrid catalyst as well as their deactivation trend during operation time. The individuation of key structure-activity relationships helped to explain how the extent of interaction between the metal-oxides phase with the zeolite surface as well as the strength of the acid sites significantly control the catalyst stability.
Interaction effects between CuO-ZnO-ZrO2 methanol phase and zeolite surface affecting stability of hybrid systems during one-step CO2 hydrogenation to DME
Bonura G
;Cannilla C;Todaro S;Frusteri F
2020
Abstract
A significant boost to the catalytic technology of CO-to-DME hydrogenation in a single step was recently given by the design of novel hybrid multimetallic/zeolite systems. However, a significant drop of catalyst activity after few hours of operation time pushes now the research interest towards the development of more stable multifunctional systems, suitable to ensure activity, selectivity and lifetime under typical industrial conditions. In this work, the influence of different home-made zeolite samples (i.e., Sil-1, MFI, Y, FER, BEA, MOR), integrated in a weight ratio of 1:1 with a CuO-ZnO-ZrO metal-oxide(s) phase, was investigated under long-term stability tests in a fixed bed reactor during CO hydrogenation reaction to assess the activity-selectivity pattern of the hybrid catalyst as well as their deactivation trend during operation time. The individuation of key structure-activity relationships helped to explain how the extent of interaction between the metal-oxides phase with the zeolite surface as well as the strength of the acid sites significantly control the catalyst stability.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1226086X21001465-main.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.